XNOR uses Tensor Cores on Turing GPU CC>=7.3 (not Volta)

pull/2352/head
AlexeyAB 6 years ago
parent e17bd9ba8f
commit f09a9c3315
  1. 12
      src/convolutional_kernels.cu
  2. 8
      src/convolutional_layer.c
  3. 2
      src/im2col.h
  4. 485
      src/im2col_kernels.cu
  5. 9
      src/yolo_layer.c

@ -180,7 +180,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
//state.input = l.binary_input_gpu;
//cudaDeviceSynchronize();
if (l.align_bit_weights_gpu && !state.train && l.c >= 64)// && l.size > 1)
if (l.align_bit_weights_gpu && !state.train && l.c >= 32)
{
//return;
cudaError_t status = cudaSuccess;
@ -196,10 +196,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
size_t t_intput_size = new_ldb * n;
size_t t_bit_input_size = t_intput_size / 8;// +1;
//if(0)
if (l.c % 32 == 0)
//if (l.stride == 1 && l.pad == 1 && l.c % 32 == 0)
//if(1)
{
//printf("\n\n l.index = %d, l.w = %d, l.c = %d, l.n = %d, l.stride = %d, l.pad = %d - new XNOR \n", l.index, l.w, l.c, l.n, l.stride, l.pad);
//printf("l.align_workspace_size = %d, (l.c * l.w * l.h) = %d \n", l.align_workspace_size, (l.c * l.w * l.h));
@ -296,7 +293,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
//start_timer();
gemm_nn_custom_bin_mean_transposed_gpu(m, n, k,
(unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu,
new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu, l.activation);
new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu, l.activation == LEAKY);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("gemm_nn_custom_bin_mean_transposed_gpu");
@ -366,7 +363,7 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
//start_timer();
gemm_nn_custom_bin_mean_transposed_gpu(m, n, k,
(unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu,
new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu, l.activation);
new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu, l.activation == LEAKY);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("gemm_nn_custom_bin_mean_transposed_gpu");
//}
@ -391,7 +388,8 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
*/
//add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
if(l.activation != LINEAR && l.activation != LEAKY) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
if (l.activation != LINEAR && l.activation != LEAKY) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
//if(l.activation != LINEAR && l.activation != LEAKY) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
//if (l.binary || l.xnor) swap_binary(&l);
//cudaDeviceSynchronize();
return;

@ -726,14 +726,16 @@ void binary_align_weights(convolutional_layer *l)
float_to_bit(align_weights, l->align_bit_weights, align_weights_size);
/*
if ((l->n % 8) == 0 && ((l->out_w*l->out_h) % 8) == 0 && l->c >= 64 && l->n == 128) {
//if (l->n >= 32)
if(gpu_index >= 0)
{
int M = l->n;
int N = l->out_w*l->out_h;
//printf("\n M = %d, N = %d, M %% 8 = %d, N %% 8 = %d - weights \n", M, N, M % 8, N % 8);
//printf("\n l.w = %d, l.c = %d, l.n = %d \n", l->w, l->c, l->n);
for (i = 0; i < align_weights_size / 8; ++i) l->align_bit_weights[i] = ~(l->align_bit_weights[i]);
}
*/
get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr);

@ -44,7 +44,7 @@ void fill_int8_gpu(unsigned char *src, unsigned char val, size_t size);
void gemm_nn_custom_bin_mean_transposed_gpu(int M, int N, int K,
unsigned char *A, int lda,
unsigned char *B, int ldb,
float *C, int ldc, float *mean_arr, float *bias, ACTIVATION a);
float *C, int ldc, float *mean_arr, float *bias, int leaky_activation);
// sequentially - BAD
void gemm_nn_custom_bin_mean_transposed_sequentially_gpu(int M, int N, int K,

@ -1433,215 +1433,149 @@ int warpAllReduceSum(int val) {
// Tensor Cores binary (CC >= 7.3 && CUDA >= 10.0) - __CUDA_SUBBYTE_IMMA__
#if CUDART_VERSION >= 10000
#include <mma.h>
#endif
#define WMMA_M 8
#define WMMA_N 8
#define WMMA_K 128
#define WMMA_K32 (WMMA_K/32)
// Coalescing
// A (weights) in the shared_memory - GOOD
// Tensor Cores are used for XOR-GEMM
__global__ void gemm_nn_custom_bin_mean_transposed_tensor_kernel(int M, int N, int K,
unsigned char *A, int lda,
unsigned char *B, int ldb,
float *C, int ldc, float *mean_arr, float *bias_arr)
{
// total 57%
int index = blockIdx.x*blockDim.x + threadIdx.x;
__shared__ uint8_t A_s[6144 * 8 / 4];
//__shared__ uint64_t A_s[6144]; // 48 KB // [lda x M`]
//__shared__ uint8_t A_s[6144*8]; // 48 KB // [lda x M`]
int start_i = blockIdx.x*blockDim.x / N;
int end_i = (blockIdx.x*blockDim.x + blockDim.x) / N + 1;
size_t shared_size = lda * (end_i - start_i);
int i_cur = index / N;
int local_i = i_cur - start_i;
// ~10%
for (int k = threadIdx.x * 64; k < shared_size; k += blockDim.x * 64) {
int x = start_i*lda + k;
if (x < (M*lda)) *((uint64_t *)(A_s + k / 8)) = *((uint64_t *)(A + x / 8));
}
__syncthreads();
int i, j, k, h;
// 47% = 29 + 10 + 8
j = index % N;
{ // out_h*out_w - one channel output size [169 - 173056]
i = index / N;
//if (i < M) // l.n - filters [16 - 55 - 1024]
{
int count = 0;
k = 0;
if (i < M)
{
float mean_val = mean_arr[i];
float bias_val = bias_arr[i];
for (; k < K; k += 128) { // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
//uint4 a_bit128 = *((uint4 *)(A + (i*lda + k) / 8)); // weights
uint4 a_bit128 = *((uint4 *)(A_s + (local_i*lda + k) / 8)); // weights
uint4 b_bit128 = *((uint4 *)(B + (j*ldb + k) / 8)); // input
uint4 c_bit128 = xor_int128(a_bit128, b_bit128);
count += __popc(c_bit128.w) + __popc(c_bit128.x) +
__popc(c_bit128.y) + __popc(c_bit128.z);
}
const int bit_step = 128;// 256;
int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
count = count - f1; // remove extra bits (from empty space for align only)
C[i*ldc + j] = (2 * count - K) *mean_val + bias_val;
}
}
}
}
#if CUDART_VERSION >= 10000
// Coalescing
// A (weights) in the shared_memory - GOOD
__global__ void gemm_nn_custom_bin_mean_transposed_tensor_kernel_old(int M, int N, int K,
unsigned char *A, int lda,
unsigned char *B, int ldb,
float *C, int ldc, float *mean_arr, float *bias_arr)
float *C, int ldc, float *mean_arr, float *bias_arr, int leaky_activation)
{
// total 57%
int index = blockIdx.x*blockDim.x + threadIdx.x;
__shared__ int C_s[8*8 * 32]; // BIN GEMM WMMA
__shared__ int C_s[8*8 * 32]; // Temprorary result of GEMM WMMA
const int lane_id = threadIdx.x % 32;
const int warp_id = threadIdx.x / 32;
const int global_warp_id = index / 32;
const int N_aligned = N + WMMA_N - (N % WMMA_N);
int i, j, k, h;
// 47% = 29 + 10 + 8
j = global_warp_id % (N / 8);
j = j * 8;
j = global_warp_id % (N_aligned / WMMA_N);
j = j * WMMA_N;
{ // out_h*out_w - one channel output size [169 - 173056]
i = global_warp_id / (N / 8);
i = i * 8;
i = global_warp_id / (N_aligned / WMMA_N);
i = i * WMMA_M;
if (i == 0 && j == 0 && lane_id == 0) {
// printf(" i = %d, j = %d, global_warp_id = %d, index = %d \n ", i, j, global_warp_id, index);
}
int count = 0;
k = 0;
//if (i < M) // l.n - filters [16 - 55 - 1024]
if (i < M) //if (i < M) // l.n - filters [16 - 55 - 1024]
{
int count = 0;
k = 0;
if (i < M)
{
// Tensor Cores binary (CC >= 7.3 && CUDA >= 10.0) - __CUDA_SUBBYTE_IMMA__
//#if __CUDA_ARCH__ >= 730 && CUDART_VERSION >= 10000
#define WMMA_M 8
#define WMMA_N 8
#define WMMA_K 128
#define WMMA_K32 (WMMA_K/32)
if (j + WMMA_N > N) j = N - WMMA_N; // must be: j+7 < N
if (i + WMMA_M > M) i = M - WMMA_M; // must be: i+7 < M
#if __CUDA_ARCH__ >= 730
using namespace nvcuda;
wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, wmma::experimental::precision::b1, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, wmma::experimental::precision::b1, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, int> c_frag;
wmma::fill_fragment(c_frag, 0); // !!!! XOR isn't XNOR !!!!!!!!!!
// lda, ldb - are in bits, should be divided by /8 or /32
// 8 x 8 x 4 (uint32_t, 4 * 32 = 128 bit)
for (; k < K; k += 128)
{ // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
int64_t A_cur_index = (i*lda + k) / 8;
//int64_t A_cur_index = (local_i*lda + k) / 8;
int64_t B_cur_index = (j*ldb + k) / 8;
wmma::load_matrix_sync(a_frag, (uint32_t *)(A + A_cur_index), lda); // lda = M
wmma::load_matrix_sync(b_frag, (uint32_t *)(B + B_cur_index), ldb); // ldb = K
/*
if (i == 0 && j == 0) {
printf(" %d - %u, ", lane_id, a_frag.x[0]);
}
// Tensor Cores
using namespace nvcuda;
wmma::fragment<wmma::matrix_a, WMMA_M, WMMA_N, WMMA_K, wmma::experimental::precision::b1, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, WMMA_M, WMMA_N, WMMA_K, wmma::experimental::precision::b1, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, WMMA_M, WMMA_N, WMMA_K, int> c_frag;
wmma::fill_fragment(c_frag, 0); // !!!! XOR isn't XNOR !!!!!!!!!!
if (i == 0 && j == 0 && lane_id == 1) {
printf("\n\n now raw mem \n");
// 8 x 8 x 4 (uint32_t, 4 * 32 = 128 bit)
for (; k < K; k += 128) // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
{
int64_t A_cur_index = (i*lda + k) / 8;
//int64_t A_cur_index = (local_i*lda + k) / 8;
int64_t B_cur_index = (j*ldb + k) / 8;
for (int i_d = 0; i_d < WMMA_M; ++i_d) { //8
for (int k_d = 0; k_d < WMMA_K; k_d += 32) { //4
uint32_t a_bit32 = *((uint32_t *)(A + ((i + i_d)*lda + (k + k_d)) / 8)); // weights
//uint32_t a_bit32 = *((uint32_t *)(A + A_cur_index + i_d*lda/8 + k_d/ 8)); // weights
printf(" %d - %u, ", i_d*WMMA_K32 + k_d/32, a_bit32);
}
printf("\n");
}
printf("\n\n");
}
*/
// lda, ldb - are in bits
wmma::load_matrix_sync(a_frag, (uint32_t *)(A + A_cur_index), lda); // lda = M
wmma::load_matrix_sync(b_frag, (uint32_t *)(B + B_cur_index), ldb); // ldb = K
wmma::bmma_sync(c_frag, a_frag, b_frag, c_frag); // XOR-GEMM
}
// C[i*ldc + j]
wmma::store_matrix_sync(&C_s[warp_id*WMMA_M*WMMA_N], c_frag, WMMA_N, wmma::mem_row_major);
#else // __CUDA_ARCH__ >= 730
// Custom XOR-GEMM
int k_d = lane_id % 4;
int i_d = lane_id / 4;
int j_d = lane_id / 4;
int32_t accum_c_val[8]; // wmma::fill_fragment(c_frag, 0);
for (int local_j = 0; local_j < 8; ++local_j) {
accum_c_val[local_j] = 0;
}
wmma::bmma_sync(c_frag, a_frag, b_frag, c_frag);
// 8 x 8 x 4 (uint32_t, 4 * 32 = 128 bit)
for (; k < K; k += 128) // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
{
int64_t A_cur_index = (i*lda + k) / 8;
//int64_t A_cur_index = (local_i*lda + k) / 8;
int64_t B_cur_index = (j*ldb + k) / 8;
// C[i*ldc + j]
wmma::store_matrix_sync(&C_s[warp_id*WMMA_M*WMMA_N], c_frag, WMMA_N, wmma::mem_row_major);
// lda, ldb - are in bits
// 8*4 = 32
// 8*8 = 64
int k_d = lane_id % 4;
int i_d = lane_id / 4;
int j_d = lane_id / 4;
uint32_t a_val = *(uint32_t *)(A + ((i + i_d)*lda + (k + k_d*32)) / 8); // wmma::load_matrix_sync(a_frag, (uint32_t *)(A + A_cur_index), lda);
uint32_t b_val = *(uint32_t *)(B + ((j + j_d)*ldb + (k + k_d*32)) / 8); // wmma::load_matrix_sync(b_frag, (uint32_t *)(B + B_cur_index), ldb);
// wmma::bmma_sync(c_frag, a_frag, b_frag, c_frag);
int32_t c_val[8]; // 8 x 32 threads = 256
#pragma UNROLL
for (int local_j = 0; local_j < 8; ++local_j)
{
uint32_t b_val_cur = __shfl(b_val, local_j *4 + k_d);
c_val[local_j] = __popc(xor_int32(a_val, b_val_cur));
}
/*
for (; k < K; k += 128) { // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
uint4 a_bit128 = *((uint4 *)(A + (i*lda + k) / 8)); // weights
//uint4 a_bit128 = *((uint4 *)(A_s + (local_i*lda + k) / 8)); // weights
uint4 b_bit128 = *((uint4 *)(B + (j*ldb + k) / 8)); // input
uint4 c_bit128 = xnor_int128(a_bit128, b_bit128);
count += __popc(c_bit128.w) + __popc(c_bit128.x) +
__popc(c_bit128.y) + __popc(c_bit128.z);
#pragma UNROLL
for (int local_j = 0; local_j < 8; ++local_j)
{
#pragma UNROLL
for (int local_k = 0; local_k < 4; ++local_k) {
accum_c_val[local_j] += __shfl(c_val[local_j], i_d * 4 + local_k);
}
*/
}
}
// only the first 8 threads (i) contain 8 good values each, in c_val[8] (j) = 8 x 8 =64
// wmma::store_matrix_sync(&C_s[warp_id*WMMA_M*WMMA_N], c_frag, WMMA_N, wmma::mem_row_major);
if (k_d == 0) {
for (int local_j = 0; local_j < 8; ++local_j)
{
C_s[warp_id*WMMA_M*WMMA_N + i_d*WMMA_N + local_j] = accum_c_val[local_j];
}
}
#endif // __CUDA_ARCH__ >= 730
#pragma UNROLL
for (int i_d = 0; i_d < WMMA_M; ++i_d) {
for (int j_d = 0; j_d < WMMA_N; ++j_d)
{
{
int i_d = lane_id % WMMA_M;
{
for (int j_d = lane_id / WMMA_M; j_d < WMMA_N; j_d += WMMA_N / 2)
{
int count = C_s[warp_id*WMMA_M*WMMA_N + i_d*WMMA_N + j_d];
if (i == 0 && j == 0 && lane_id == 0) {
//printf(" %d -", count);
}
const int bit_step = 128;
int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
count = count - f1; // remove extra bits (from empty space for align only)
count = (2 * count - K);
if (i == 0 && j == 0 && lane_id == 0) {
//printf(" %d,", count);
}
float mean_val = mean_arr[i + i_d];
float bias_val = bias_arr[i + i_d];
float dst_val = count *mean_val + bias_val;
if (leaky_activation)
dst_val = (dst_val > 0) ? (dst_val) : (0.1*dst_val); // Leaky activation
C[(i + i_d)*ldc + (j + j_d)] = count *mean_val + bias_val;
//C[(i + i_d)*ldc + (j + j_d)] = (2 * count - K) *mean_val + bias_val;
C[(i + i_d)*ldc + (j + j_d)] = dst_val;
}
if (i == 0 && j == 0 && lane_id == 0) {
//printf(" i = %d, j = %d, i_d = %d \n ", i, j, i_d);
}
}
}
}
@ -1654,7 +1588,7 @@ __global__ void gemm_nn_custom_bin_mean_transposed_tensor_kernel_old(int M, int
__global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int K,
unsigned char *A, int lda,
unsigned char *B, int ldb,
float *C, int ldc, float *mean_arr, float *bias_arr)
float *C, int ldc, float *mean_arr, float *bias_arr, int leaky_activation)
{
// total 57%
int index = blockIdx.x*blockDim.x + threadIdx.x;
@ -1813,186 +1747,16 @@ __global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel(int M, int N, int
const int bit_step = 256;
int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
count = count - f1; // remove extra bits (from empty space for align only)
C[i*ldc + j] = (2 * count - K) *mean_val + bias_val;
}
}
}
}
// Coalescing - with LEAKY activation
// A (weights) in the shared_memory - GOOD
__global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel_leaky(int M, int N, int K,
unsigned char *A, int lda,
unsigned char *B, int ldb,
float *C, int ldc, float *mean_arr, float *bias_arr)
{
// total 57%
int index = blockIdx.x*blockDim.x + threadIdx.x;
__shared__ uint8_t A_s[6144 * 8 / 4];
//__shared__ uint64_t A_s[6144]; // 48 KB // [lda x M`]
//__shared__ uint8_t A_s[6144*8]; // 48 KB // [lda x M`]
int start_i = blockIdx.x*blockDim.x / N;
int end_i = (blockIdx.x*blockDim.x + blockDim.x) / N + 1;
size_t shared_size = lda * (end_i - start_i);
int i_cur = index / N;
int local_i = i_cur - start_i;
// ~10%
for (int k = threadIdx.x * 64; k < shared_size; k += blockDim.x * 64) {
int x = start_i*lda + k;
if (x < (M*lda)) *((uint64_t *)(A_s + k / 8)) = *((uint64_t *)(A + x / 8));
}
__syncthreads();
int i, j, k, h;
// 47% = 29 + 10 + 8
j = index % N;
{ // out_h*out_w - one channel output size [169 - 173056]
i = index / N;
//if (i < M) // l.n - filters [16 - 55 - 1024]
{
int count = 0;
k = 0;
#ifdef NOT_USED
// 32 thread X 256 bit = 8192 bit
for (; k < (K - 8192); k += 8192) { // l.size*l.size*l.c - one filter size [27 - 9216]
ulonglong4 c_bit256;
//int64_t A_cur_index = (i*lda + k) / 8;
int64_t A_cur_index = (local_i*lda + k) / 8;
int64_t B_cur_index = (j*ldb + k) / 8;
if (i >= M) A_cur_index = 0;
#pragma unroll
for (int t = 0; t < WARP_SIZE; ++t) {
const int lane_id = threadIdx.x % WARP_SIZE;
const int64_t A_i = __shfl(A_cur_index, t) + 32 * lane_id;
const int64_t B_i = __shfl(B_cur_index, t) + 32 * lane_id;
{
//ulonglong4 a_bit256 = *((ulonglong4 *)(A + A_i)); // weights
ulonglong4 a_bit256 = *((ulonglong4 *)(A_s + A_i)); // weights
ulonglong4 b_bit256 = *((ulonglong4 *)(B + B_i)); // input
c_bit256 = xnor_int256(a_bit256, b_bit256);
int tmp_count = __popcll(c_bit256.w) + __popcll(c_bit256.x) +
__popcll(c_bit256.y) + __popcll(c_bit256.z);
int sum_count = warpAllReduceSum(tmp_count);
if (lane_id == t) count += sum_count;
}
}
}
#endif
//#ifdef NOT_USED
// 32 thread X 64 bit = 2048 bit // 29%
for (; k < (K - 2048); k += 2048) { // l.size*l.size*l.c - one filter size [27 - 9216]
uint64_t c_bit64;
//int64_t A_cur_index = (i*lda + k) / 8;
int64_t A_cur_index = (local_i*lda + k) / 8;
int64_t B_cur_index = (j*ldb + k) / 8;
if (i >= M) A_cur_index = 0;
#pragma unroll
for (int t = 0; t < WARP_SIZE; ++t) {
const int lane_id = threadIdx.x % WARP_SIZE;
const int64_t A_i = __shfl(A_cur_index, t) + 8 * lane_id;
const int64_t B_i = __shfl(B_cur_index, t) + 8 * lane_id;
{
//uint64_t a_bit64 = *((uint64_t *)(A + A_i)); // weights
uint64_t a_bit64 = *((uint64_t *)(A_s + A_i)); // weights
uint64_t b_bit64 = *((uint64_t *)(B + B_i)); // input
c_bit64 = xnor_int64(a_bit64, b_bit64);
int tmp_count = __popcll(c_bit64);
int sum_count = warpAllReduceSum(tmp_count);
if (lane_id == t) count += sum_count;
}
}
}
//#endif
//#ifdef NOT_USED
// 32 thread X 32 bit = 1024 bit // 10%
for (; k < (K - 1024); k += 1024) { // l.size*l.size*l.c - one filter size [27 - 9216]
//int64_t A_cur_index = (i*lda + k) / 8;
int64_t A_cur_index = (local_i*lda + k) / 8;
int64_t B_cur_index = (j*ldb + k) / 8;
if (i >= M) A_cur_index = 0;
#pragma unroll
for (int t = 0; t < WARP_SIZE; ++t) {
const int lane_id = threadIdx.x % WARP_SIZE;
const int64_t A_i = __shfl(A_cur_index, t) + 4 * lane_id;
const int64_t B_i = __shfl(B_cur_index, t) + 4 * lane_id;
{
//uint64_t a_bit64 = *((uint64_t *)(A + A_i)); // weights
uint32_t a_bit32 = *((uint32_t *)(A_s + A_i)); // weights
uint32_t b_bit32 = *((uint32_t *)(B + B_i)); // input
uint32_t c_bit32 = xnor_int32(a_bit32, b_bit32);
int tmp_count = __popc(c_bit32);
int sum_count = warpAllReduceSum(tmp_count);
if (lane_id == t) count += sum_count;
}
}
}
//#endif
if (i < M)
{
float mean_val = mean_arr[i];
float bias_val = bias_arr[i];
//#ifdef NOT_USED
// 8%
for (; k < K; k += 256) { // l.size*l.size*l.c - one filter size [27 - 144 - 9216]
//ulonglong4 a_bit256 = *((ulonglong4 *)(A + (i*lda + k) / 8)); // weights
ulonglong4 a_bit256 = *((ulonglong4 *)(A_s + (local_i*lda + k) / 8)); // weights
ulonglong4 b_bit256 = *((ulonglong4 *)(B + (j*ldb + k) / 8)); // input
ulonglong4 c_bit256 = xnor_int256(a_bit256, b_bit256);
count += __popcll(c_bit256.w) + __popcll(c_bit256.x) +
__popcll(c_bit256.y) + __popcll(c_bit256.z);
}
//#endif
#ifdef NOT_USED
for (; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
//uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); // weights
uint64_t a_bit64 = *((uint64_t *)(A_s + (local_i*lda + k) / 8)); // weights
uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); // input
uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
count += __popcll(c_bit64);
}
#endif
const int bit_step = 256;
int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step));
count = count - f1; // remove extra bits (from empty space for align only)
float dst_val = (2 * count - K) *mean_val + bias_val;
dst_val = (dst_val > 0) ? (dst_val) : (0.1*dst_val); // Leaky activation
if(leaky_activation)
dst_val = (dst_val > 0) ? (dst_val) : (0.1*dst_val); // Leaky activation
C[i*ldc + j] = dst_val;
}
}
}
}
// further optimization - use WMMA GEMM for using Tensor Cores
// https://github.com/NVIDIA-developer-blog/code-samples/blob/master/posts/tensor-cores/simpleTensorCoreGEMM.cu
// https://github.com/NVIDIA/cuda-samples/blob/master/Samples/cudaTensorCoreGemm/cudaTensorCoreGemm.cu
@ -2012,7 +1776,7 @@ __global__ void gemm_nn_custom_bin_mean_transposed_gpu_kernel_leaky(int M, int N
void gemm_nn_custom_bin_mean_transposed_gpu(int M, int N, int K,
unsigned char *A, int lda,
unsigned char *B, int ldb,
float *C, int ldc, float *mean_arr, float *bias, ACTIVATION a)
float *C, int ldc, float *mean_arr, float *bias, int leaky_activation)
{
size_t size = M*N;
const int num_blocks = get_number_of_blocks(size, BLOCK);
@ -2026,38 +1790,39 @@ void gemm_nn_custom_bin_mean_transposed_gpu(int M, int N, int K,
*/
//printf(" shared_memory: (w) lda*BLOCK/N = %d, (i) ldb*BLOCK/M = %d, \t lda = %d \n\n", lda*BLOCK / N, ldb*BLOCK / M, lda);
if (a == LEAKY) {
gemm_nn_custom_bin_mean_transposed_gpu_kernel_leaky << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (
#if CUDART_VERSION >= 10000
//if (M % 8 == 0 && N % 8 == 0 && M == 128)
//if (M >= 32) // l.n >= 32
if (1)
{
const int M_aligned = M + (8 - (M % 8));
const int N_aligned = N + (8 - (N % 8));
size_t size = (M_aligned / 8)*(N_aligned / 8)*WARP_SIZE;
const int num_blocks = get_number_of_blocks(size, BLOCK);
//printf(" lda = %d, ldb = %d, ldc = %d, lda/32 = %d, ldb/32 = %d, ldc/32 = %d \n", lda, ldb, ldc, lda / 32, ldb / 32, ldc / 32);
//printf(" l.c (K/9) = %d, M (l.n) = %d \n", (K%9 == 0)? K / 9: K, M);
gemm_nn_custom_bin_mean_transposed_tensor_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (
M, N, K,
A, lda,
B, ldb,
C, ldc,
mean_arr, bias);
mean_arr, bias, leaky_activation);
//cudaDeviceSynchronize();
//getchar();
}
else {
/*
#if CUDART_VERSION >= 10000
if (M % 8 == 0 && N % 8 == 0 && M == 128) {
//printf(" lda = %d, ldb = %d, ldc = %d, lda/32 = %d, ldb/32 = %d, ldc/32 = %d \n", lda, ldb, ldc, lda / 32, ldb / 32, ldc / 32);
gemm_nn_custom_bin_mean_transposed_tensor_kernel_old << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (
M, N, K,
A, lda,
B, ldb,
C, ldc,
mean_arr, bias);
}
else
else
#endif // CUDART_VERSION >= 10000
*/
{
gemm_nn_custom_bin_mean_transposed_gpu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (
M, N, K,
A, lda,
B, ldb,
C, ldc,
mean_arr, bias);
}
{
gemm_nn_custom_bin_mean_transposed_gpu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (
M, N, K,
A, lda,
B, ldb,
C, ldc,
mean_arr, bias, leaky_activation);
}
}
// --------------------------------

@ -116,6 +116,11 @@ void resize_yolo_layer(layer *l, int w, int h)
box get_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride)
{
box b;
// ln - natural logarithm (base = e)
// x` = t.x * lw - i; // x = ln(x`/(1-x`)) // x - output of previous conv-layer
// y` = t.y * lh - i; // y = ln(y`/(1-y`)) // y - output of previous conv-layer
// w = ln(t.w * net.w / anchors_w); // w - output of previous conv-layer
// h = ln(t.h * net.h / anchors_h); // h - output of previous conv-layer
b.x = (i + x[index + 0*stride]) / lw;
b.y = (j + x[index + 1*stride]) / lh;
b.w = exp(x[index + 2*stride]) * biases[2*n] / w;
@ -437,6 +442,10 @@ void forward_yolo_layer_gpu(const layer l, network_state state)
for (b = 0; b < l.batch; ++b){
for(n = 0; n < l.n; ++n){
int index = entry_index(l, b, n*l.w*l.h, 0);
// y = 1./(1. + exp(-x))
// x = ln(y/(1-y)) // ln - natural logarithm (base = e)
// if(y->1) x -> inf
// if(y->0) x -> -inf
activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); // x,y
index = entry_index(l, b, n*l.w*l.h, 4);
activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC); // classes and objectness

Loading…
Cancel
Save