Added: calc_anchors

pull/492/head
AlexeyAB 7 years ago
parent fe44d3d0f2
commit f39160f6e8
  1. 8
      build/darknet/x64/calc_anchors.cmd
  2. 2
      build/darknet/x64/data/voc.data
  3. 95
      src/detector.c
  4. 2
      src/reorg_layer.c

@ -0,0 +1,8 @@
rem # How to calculate Yolo v2 anchors using K-means++
darknet.exe detector calc_anchors data/voc.data -num_of_clusters 5 -final_width 13 -final_heigh 13
pause

@ -1,5 +1,5 @@
classes= 20 classes= 20
train = data/voc/train.txt train = data/train_voc.txt
valid = data/voc/2007_test.txt valid = data/voc/2007_test.txt
#difficult = data/voc/difficult_2007_test.txt #difficult = data/voc/difficult_2007_test.txt
names = data/voc.names names = data/voc.names

@ -10,7 +10,9 @@
#ifdef OPENCV #ifdef OPENCV
#include "opencv2/highgui/highgui_c.h" #include "opencv2/highgui/highgui_c.h"
#include "opencv2/core/core_c.h" #include "opencv2/core/core_c.h"
//#include "opencv2/core/core.hpp"
#include "opencv2/core/version.hpp" #include "opencv2/core/version.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#ifndef CV_VERSION_EPOCH #ifndef CV_VERSION_EPOCH
#include "opencv2/videoio/videoio_c.h" #include "opencv2/videoio/videoio_c.h"
@ -804,6 +806,95 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
} }
#ifdef OPENCV
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height)
{
printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height);
//float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
float *rel_width_height_array = calloc(1000, sizeof(float));
list *options = read_data_cfg(datacfg);
char *train_images = option_find_str(options, "train", "data/train.list");
list *plist = get_paths(train_images);
int number_of_images = plist->size;
char **paths = (char **)list_to_array(plist);
int number_of_boxes = 0;
printf(" read labels from %d images \n", number_of_images);
int i, j;
for (i = 0; i < number_of_images; ++i) {
char *path = paths[i];
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
find_replace(labelpath, "JPEGImages", "labels", labelpath);
find_replace(labelpath, ".jpg", ".txt", labelpath);
find_replace(labelpath, ".JPEG", ".txt", labelpath);
find_replace(labelpath, ".png", ".txt", labelpath);
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
//printf(" new path: %s \n", labelpath);
for (j = 0; j < num_labels; ++j)
{
number_of_boxes++;
rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float));
rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * final_width;
rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * final_height;
printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes);
}
}
printf("\n all loaded. \n");
//int number_of_boxes = 10;
CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1);
CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1);
CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1);
for (i = 0; i < number_of_boxes; ++i) {
points->data.fl[i * 2] = rel_width_height_array[i * 2];
points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1];
//cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0));
//cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0));
}
const int attemps = 1000;
double compactness;
enum {
KMEANS_RANDOM_CENTERS = 0,
KMEANS_USE_INITIAL_LABELS = 1,
KMEANS_PP_CENTERS = 2
};
printf("\n calculating k-means++ ...");
// Should be used: distance(box, centroid) = 1 - IoU(box, centroid)
cvKMeans2(points, num_of_clusters, labels,
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 1000, 0), attemps,
0, KMEANS_RANDOM_CENTERS,
centers, &compactness);
printf("\n");
printf("anchors = ");
for (i = 0; i < num_of_clusters; ++i) {
printf("%2.2f,%2.2f, ", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]);
}
//for (i = 0; i < number_of_boxes; ++i)
// printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]);
free(rel_width_height_array);
cvReleaseMat(&points);
cvReleaseMat(&centers);
cvReleaseMat(&labels);
}
#else
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height) {
printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n");
}
#endif // OPENCV
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show) void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show)
{ {
list *options = read_data_cfg(datacfg); list *options = read_data_cfg(datacfg);
@ -876,6 +967,9 @@ void run_detector(int argc, char **argv)
float thresh = find_float_arg(argc, argv, "-thresh", .24); float thresh = find_float_arg(argc, argv, "-thresh", .24);
int cam_index = find_int_arg(argc, argv, "-c", 0); int cam_index = find_int_arg(argc, argv, "-c", 0);
int frame_skip = find_int_arg(argc, argv, "-s", 0); int frame_skip = find_int_arg(argc, argv, "-s", 0);
int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5);
int final_width = find_int_arg(argc, argv, "-final_width", 13);
int final_heigh = find_int_arg(argc, argv, "-final_heigh", 13);
if(argc < 4){ if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return; return;
@ -916,6 +1010,7 @@ void run_detector(int argc, char **argv)
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh);
else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh);
else if(0==strcmp(argv[2], "demo")) { else if(0==strcmp(argv[2], "demo")) {
list *options = read_data_cfg(datacfg); list *options = read_data_cfg(datacfg);
int classes = option_find_int(options, "classes", 20); int classes = option_find_int(options, "classes", 20);

@ -110,11 +110,9 @@ void backward_reorg_layer_gpu(layer l, network_state state)
{ {
if (l.reverse) { if (l.reverse) {
reorg_ongpu(l.delta_gpu, l.out_w, l.out_h, l.out_c, l.batch, l.stride, 0, state.delta); reorg_ongpu(l.delta_gpu, l.out_w, l.out_h, l.out_c, l.batch, l.stride, 0, state.delta);
//reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta);
} }
else { else {
reorg_ongpu(l.delta_gpu, l.out_w, l.out_h, l.out_c, l.batch, l.stride, 1, state.delta); reorg_ongpu(l.delta_gpu, l.out_w, l.out_h, l.out_c, l.batch, l.stride, 1, state.delta);
//reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 1, state.delta);
} }
} }
#endif #endif

Loading…
Cancel
Save