|
|
|
@ -10,7 +10,9 @@ |
|
|
|
|
#ifdef OPENCV |
|
|
|
|
#include "opencv2/highgui/highgui_c.h" |
|
|
|
|
#include "opencv2/core/core_c.h" |
|
|
|
|
//#include "opencv2/core/core.hpp"
|
|
|
|
|
#include "opencv2/core/version.hpp" |
|
|
|
|
#include "opencv2/imgproc/imgproc_c.h" |
|
|
|
|
|
|
|
|
|
#ifndef CV_VERSION_EPOCH |
|
|
|
|
#include "opencv2/videoio/videoio_c.h" |
|
|
|
@ -804,6 +806,95 @@ void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float |
|
|
|
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
#ifdef OPENCV |
|
|
|
|
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height) |
|
|
|
|
{ |
|
|
|
|
printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height); |
|
|
|
|
|
|
|
|
|
//float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 };
|
|
|
|
|
float *rel_width_height_array = calloc(1000, sizeof(float)); |
|
|
|
|
|
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
|
char *train_images = option_find_str(options, "train", "data/train.list"); |
|
|
|
|
list *plist = get_paths(train_images); |
|
|
|
|
int number_of_images = plist->size; |
|
|
|
|
char **paths = (char **)list_to_array(plist); |
|
|
|
|
|
|
|
|
|
int number_of_boxes = 0; |
|
|
|
|
printf(" read labels from %d images \n", number_of_images); |
|
|
|
|
|
|
|
|
|
int i, j; |
|
|
|
|
for (i = 0; i < number_of_images; ++i) { |
|
|
|
|
char *path = paths[i]; |
|
|
|
|
char labelpath[4096]; |
|
|
|
|
find_replace(path, "images", "labels", labelpath); |
|
|
|
|
find_replace(labelpath, "JPEGImages", "labels", labelpath); |
|
|
|
|
find_replace(labelpath, ".jpg", ".txt", labelpath); |
|
|
|
|
find_replace(labelpath, ".JPEG", ".txt", labelpath); |
|
|
|
|
find_replace(labelpath, ".png", ".txt", labelpath); |
|
|
|
|
int num_labels = 0; |
|
|
|
|
box_label *truth = read_boxes(labelpath, &num_labels); |
|
|
|
|
//printf(" new path: %s \n", labelpath);
|
|
|
|
|
for (j = 0; j < num_labels; ++j) |
|
|
|
|
{ |
|
|
|
|
number_of_boxes++; |
|
|
|
|
rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float)); |
|
|
|
|
rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * final_width; |
|
|
|
|
rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * final_height; |
|
|
|
|
printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
printf("\n all loaded. \n"); |
|
|
|
|
|
|
|
|
|
//int number_of_boxes = 10;
|
|
|
|
|
CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1); |
|
|
|
|
CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1); |
|
|
|
|
CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1); |
|
|
|
|
|
|
|
|
|
for (i = 0; i < number_of_boxes; ++i) { |
|
|
|
|
points->data.fl[i * 2] = rel_width_height_array[i * 2]; |
|
|
|
|
points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1]; |
|
|
|
|
//cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0));
|
|
|
|
|
//cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0));
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const int attemps = 1000; |
|
|
|
|
double compactness; |
|
|
|
|
|
|
|
|
|
enum { |
|
|
|
|
KMEANS_RANDOM_CENTERS = 0, |
|
|
|
|
KMEANS_USE_INITIAL_LABELS = 1, |
|
|
|
|
KMEANS_PP_CENTERS = 2 |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
printf("\n calculating k-means++ ..."); |
|
|
|
|
// Should be used: distance(box, centroid) = 1 - IoU(box, centroid)
|
|
|
|
|
cvKMeans2(points, num_of_clusters, labels,
|
|
|
|
|
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 1000, 0), attemps,
|
|
|
|
|
0, KMEANS_RANDOM_CENTERS,
|
|
|
|
|
centers, &compactness); |
|
|
|
|
|
|
|
|
|
printf("\n"); |
|
|
|
|
printf("anchors = "); |
|
|
|
|
for (i = 0; i < num_of_clusters; ++i) { |
|
|
|
|
printf("%2.2f,%2.2f, ", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//for (i = 0; i < number_of_boxes; ++i)
|
|
|
|
|
// printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]);
|
|
|
|
|
|
|
|
|
|
free(rel_width_height_array); |
|
|
|
|
cvReleaseMat(&points); |
|
|
|
|
cvReleaseMat(¢ers); |
|
|
|
|
cvReleaseMat(&labels); |
|
|
|
|
} |
|
|
|
|
#else |
|
|
|
|
void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height) { |
|
|
|
|
printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n"); |
|
|
|
|
} |
|
|
|
|
#endif // OPENCV
|
|
|
|
|
|
|
|
|
|
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show) |
|
|
|
|
{ |
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
@ -876,6 +967,9 @@ void run_detector(int argc, char **argv) |
|
|
|
|
float thresh = find_float_arg(argc, argv, "-thresh", .24); |
|
|
|
|
int cam_index = find_int_arg(argc, argv, "-c", 0); |
|
|
|
|
int frame_skip = find_int_arg(argc, argv, "-s", 0); |
|
|
|
|
int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); |
|
|
|
|
int final_width = find_int_arg(argc, argv, "-final_width", 13); |
|
|
|
|
int final_heigh = find_int_arg(argc, argv, "-final_heigh", 13); |
|
|
|
|
if(argc < 4){ |
|
|
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
|
|
|
|
return; |
|
|
|
@ -916,6 +1010,7 @@ void run_detector(int argc, char **argv) |
|
|
|
|
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
|
|
|
|
else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); |
|
|
|
|
else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh); |
|
|
|
|
else if(0==strcmp(argv[2], "demo")) { |
|
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
|
int classes = option_find_int(options, "classes", 20); |
|
|
|
|