|
|
|
@ -270,7 +270,12 @@ layer parse_yolo(list *options, size_params params) |
|
|
|
|
int *mask = parse_yolo_mask(a, &num); |
|
|
|
|
int max_boxes = option_find_int_quiet(options, "max", 30); |
|
|
|
|
layer l = make_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes, max_boxes); |
|
|
|
|
assert(l.outputs == params.inputs); |
|
|
|
|
if (l.outputs != params.inputs) { |
|
|
|
|
printf("Error: l.outputs == params.inputs \n"); |
|
|
|
|
printf("filters= in the [convolutional]-layer doesn't correspond to classes= or mask= in [yolo]-layer \n"); |
|
|
|
|
exit(EXIT_FAILURE); |
|
|
|
|
} |
|
|
|
|
//assert(l.outputs == params.inputs);
|
|
|
|
|
|
|
|
|
|
//l.max_boxes = option_find_int_quiet(options, "max", 90);
|
|
|
|
|
l.jitter = option_find_float(options, "jitter", .2); |
|
|
|
@ -308,7 +313,12 @@ layer parse_region(list *options, size_params params) |
|
|
|
|
int max_boxes = option_find_int_quiet(options, "max", 30); |
|
|
|
|
|
|
|
|
|
layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords, max_boxes); |
|
|
|
|
assert(l.outputs == params.inputs); |
|
|
|
|
if (l.outputs != params.inputs) { |
|
|
|
|
printf("Error: l.outputs == params.inputs \n"); |
|
|
|
|
printf("filters= in the [convolutional]-layer doesn't correspond to classes= or num= in [region]-layer \n"); |
|
|
|
|
exit(EXIT_FAILURE); |
|
|
|
|
} |
|
|
|
|
//assert(l.outputs == params.inputs);
|
|
|
|
|
|
|
|
|
|
l.log = option_find_int_quiet(options, "log", 0); |
|
|
|
|
l.sqrt = option_find_int_quiet(options, "sqrt", 0); |
|
|
|
|