Big changes to detection

pull/5299/head
Joseph Redmon 10 years ago
parent 5f4a5f59b0
commit fb9e0fe336
  1. 6
      .gitignore
  2. 4
      Makefile
  3. 33
      src/cost_layer.c
  4. 4
      src/cost_layer.h
  5. 2
      src/cuda.c
  6. 82
      src/darknet.c
  7. 11
      src/data.c
  8. 147
      src/detection_layer.c
  9. 46
      src/detection_layer.h
  10. 2
      src/image.c
  11. 35
      src/network.c
  12. 3
      src/network.h
  13. 28
      src/network_kernels.cu
  14. 7
      src/option_list.c
  15. 1
      src/option_list.h
  16. 37
      src/parser.c
  17. 1
      src/softmax_layer.h

6
.gitignore vendored

@ -2,12 +2,18 @@
*.dSYM
*.csv
*.out
*.png
*.sh
mnist/
data/
caffe/
grasp/
images/
opencv/
convnet/
decaf/
submission/
cfg/
darknet
# OS Generated #

@ -9,7 +9,7 @@ OBJDIR=./obj/
CC=gcc
NVCC=nvcc
OPTS=-O3
LDFLAGS=`pkg-config --libs opencv` -lm -pthread
LDFLAGS=`pkg-config --libs opencv` -lm -pthread -lstdc++
COMMON=`pkg-config --cflags opencv` -I/usr/local/cuda/include/
CFLAGS=-Wall -Wfatal-errors
@ -25,7 +25,7 @@ CFLAGS+=-DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas
endif
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o detection_layer.o
ifeq ($(GPU), 1)
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
endif

@ -10,7 +10,6 @@
COST_TYPE get_cost_type(char *s)
{
if (strcmp(s, "sse")==0) return SSE;
if (strcmp(s, "detection")==0) return DETECTION;
fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s);
return SSE;
}
@ -20,8 +19,6 @@ char *get_cost_string(COST_TYPE a)
switch(a){
case SSE:
return "sse";
case DETECTION:
return "detection";
}
return "sse";
}
@ -41,17 +38,20 @@ cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type)
return layer;
}
void pull_cost_layer(cost_layer layer)
{
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
}
void push_cost_layer(cost_layer layer)
{
cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
}
void forward_cost_layer(cost_layer layer, float *input, float *truth)
{
if (!truth) return;
copy_cpu(layer.batch*layer.inputs, truth, 1, layer.delta, 1);
axpy_cpu(layer.batch*layer.inputs, -1, input, 1, layer.delta, 1);
if(layer.type == DETECTION){
int i;
for(i = 0; i < layer.batch*layer.inputs; ++i){
if((i%25) && !truth[(i/25)*25]) layer.delta[i] = 0;
}
}
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
//printf("cost: %f\n", *layer.output);
}
@ -66,14 +66,21 @@ void backward_cost_layer(const cost_layer layer, float *input, float *delta)
void forward_cost_layer_gpu(cost_layer layer, float * input, float * truth)
{
if (!truth) return;
/*
float *in = calloc(layer.inputs*layer.batch, sizeof(float));
float *t = calloc(layer.inputs*layer.batch, sizeof(float));
cuda_pull_array(input, in, layer.batch*layer.inputs);
cuda_pull_array(truth, t, layer.batch*layer.inputs);
forward_cost_layer(layer, in, t);
cuda_push_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
free(in);
free(t);
*/
copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_gpu, 1);
axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_gpu, 1);
if(layer.type==DETECTION){
mask_ongpu(layer.inputs*layer.batch, layer.delta_gpu, truth, 25);
}
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*layer.inputs);
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
//printf("cost: %f\n", *layer.output);

@ -2,12 +2,14 @@
#define COST_LAYER_H
typedef enum{
SSE, DETECTION
SSE
} COST_TYPE;
typedef struct {
int inputs;
int batch;
int coords;
int classes;
float *delta;
float *output;
COST_TYPE type;

@ -5,6 +5,7 @@ int gpu_index = 0;
#include "cuda.h"
#include "utils.h"
#include "blas.h"
#include "assert.h"
#include <stdlib.h>
@ -15,6 +16,7 @@ void check_error(cudaError_t status)
const char *s = cudaGetErrorString(status);
char buffer[256];
printf("CUDA Error: %s\n", s);
assert(0);
snprintf(buffer, 256, "CUDA Error: %s", s);
error(buffer);
}

@ -36,42 +36,30 @@ char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus",
void draw_detection(image im, float *box, int side)
{
int classes = 20;
int elems = 4+classes+1;
int elems = 4+classes;
int j;
int r, c;
float amount[AMNT] = {0};
for(r = 0; r < side*side; ++r){
float val = box[r*elems];
for(j = 0; j < AMNT; ++j){
if(val > amount[j]) {
float swap = val;
val = amount[j];
amount[j] = swap;
}
}
}
float smallest = amount[AMNT-1];
for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){
j = (r*side + c) * elems;
//printf("%d\n", j);
//printf("Prob: %f\n", box[j]);
if(box[j] >= smallest){
int class = max_index(box+j+1, classes);
int z;
for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+1+z], class_names[z]);
printf("%f %s\n", box[j+1+class], class_names[class]);
int class = max_index(box+j, classes);
if(box[j+class] > .02 || 1){
//int z;
//for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
printf("%f %s\n", box[j+class], class_names[class]);
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
j += classes;
int d = im.w/side;
int y = r*d+box[j+1]*d;
int x = c*d+box[j+2]*d;
int h = box[j+3]*im.h;
int w = box[j+4]*im.w;
int y = r*d+box[j]*d;
int x = c*d+box[j+1]*d;
int h = box[j+2]*im.h;
int w = box[j+3]*im.w;
draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
}
}
@ -117,21 +105,22 @@ void train_detection_net(char *cfgfile, char *weightfile)
data train, buffer;
int im_dim = 512;
int jitter = 64;
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, 20, im_dim, im_dim, 7, 7, jitter, &buffer);
int classes = 21;
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
clock_t time;
while(1){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_detection_thread(imgs, paths, plist->size, 20, im_dim, im_dim, 7, 7, jitter, &buffer);
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, &buffer);
/*
image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
draw_detection(im, train.y.vals[0], 7);
show_image(im, "truth");
cvWaitKey(0);
*/
/*
image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[0]);
draw_detection(im, train.y.vals[0], 7);
show_image(im, "truth");
cvWaitKey(0);
*/
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
@ -139,7 +128,7 @@ void train_detection_net(char *cfgfile, char *weightfile)
net.seen += imgs;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
if(i%800==0){
if(i%100==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
save_weights(net, buff);
@ -161,7 +150,7 @@ void validate_detection_net(char *cfgfile, char *weightfile)
char **paths = (char **)list_to_array(plist);
int num_output = 1225;
int im_size = 448;
int classes = 20;
int classes = 21;
int m = plist->size;
int i = 0;
@ -180,30 +169,29 @@ void validate_detection_net(char *cfgfile, char *weightfile)
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
matrix pred = network_predict_data(net, val);
int j, k, class;
for(j = 0; j < pred.rows; ++j){
for(k = 0; k < pred.cols; k += classes+4+1){
for(k = 0; k < pred.cols; k += classes+4){
/*
int z;
for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
printf("\n");
*/
int z;
for(z = 0; z < 25; ++z) printf("%f, ", pred.vals[j][k+z]);
printf("\n");
*/
float p = pred.vals[j][k];
//if (pred.vals[j][k] > .001){
for(class = 0; class < classes; ++class){
int index = (k)/(classes+4+1);
for(class = 0; class < classes-1; ++class){
int index = (k)/(classes+4);
int r = index/7;
int c = index%7;
float y = (r + pred.vals[j][k+1+classes])/7.;
float x = (c + pred.vals[j][k+2+classes])/7.;
float h = pred.vals[j][k+3+classes];
float w = pred.vals[j][k+4+classes];
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, p*pred.vals[j][k+class+1], y, x, h, w);
float y = (r + pred.vals[j][k+0+classes])/7.;
float x = (c + pred.vals[j][k+1+classes])/7.;
float h = pred.vals[j][k+2+classes];
float w = pred.vals[j][k+3+classes];
printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, pred.vals[j][k+class], y, x, h, w);
}
//}
}
@ -462,7 +450,7 @@ void test_detection(char *cfgfile, char *weightfile)
if(weightfile){
load_weights(&net, weightfile);
}
int im_size = 224;
int im_size = 448;
set_batch_network(&net, 1);
srand(2222222);
clock_t time;

@ -89,8 +89,7 @@ void fill_truth_detection(char *path, float *truth, int classes, int height, int
float dw = (x - i*box_width)/box_width;
float dh = (y - j*box_height)/box_height;
//printf("%d %d %d %f %f\n", id, i, j, dh, dw);
int index = (i+j*num_width)*(4+classes+1);
truth[index++] = 1;
int index = (i+j*num_width)*(4+classes);
truth[index+id] = 1;
index += classes;
truth[index++] = dh;
@ -98,6 +97,12 @@ void fill_truth_detection(char *path, float *truth, int classes, int height, int
truth[index++] = h*(height+jitter)/height;
truth[index++] = w*(width+jitter)/width;
}
int i, j;
for(i = 0; i < num_height*num_width*(4+classes); i += 4+classes){
int background = 1;
for(j = i; j < i+classes; ++j) if (truth[j]) background = 0;
truth[i+classes-1] = background;
}
fclose(file);
}
@ -209,7 +214,7 @@ data load_data_detection_jitter_random(int n, char **paths, int m, int classes,
data d;
d.shallow = 0;
d.X = load_image_paths(random_paths, n, h, w);
int k = nh*nw*(4+classes+1);
int k = nh*nw*(4+classes);
d.y = make_matrix(n, k);
for(i = 0; i < n; ++i){
int dx = rand()%jitter;

@ -1,72 +1,123 @@
int detection_out_height(detection_layer layer)
#include "detection_layer.h"
#include "activations.h"
#include "softmax_layer.h"
#include "blas.h"
#include "cuda.h"
#include <stdio.h>
#include <stdlib.h>
int get_detection_layer_locations(detection_layer layer)
{
return layer.size + layer.h*layer.stride;
return layer.inputs / (layer.classes+layer.coords+layer.rescore);
}
int detection_out_width(detection_layer layer)
int get_detection_layer_output_size(detection_layer layer)
{
return layer.size + layer.w*layer.stride;
return get_detection_layer_locations(layer)*(layer.classes+layer.coords);
}
detection_layer *make_detection_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore)
{
int i;
size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
detection_layer *layer = calloc(1, sizeof(detection_layer));
layer->h = h;
layer->w = w;
layer->c = c;
layer->n = n;
layer->batch = batch;
layer->stride = stride;
layer->size = size;
assert(c%n == 0);
layer->filters = calloc(c*size*size, sizeof(float));
layer->filter_updates = calloc(c*size*size, sizeof(float));
layer->filter_momentum = calloc(c*size*size, sizeof(float));
float scale = 1./(size*size*c);
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
int out_h = detection_out_height(*layer);
int out_w = detection_out_width(*layer);
layer->output = calloc(layer->batch * out_h * out_w * n, sizeof(float));
layer->delta = calloc(layer->batch * out_h * out_w * n, sizeof(float));
layer->activation = activation;
layer->batch = batch;
layer->inputs = inputs;
layer->classes = classes;
layer->coords = coords;
layer->rescore = rescore;
int outputs = get_detection_layer_output_size(*layer);
layer->output = calloc(batch*outputs, sizeof(float));
layer->delta = calloc(batch*outputs, sizeof(float));
#ifdef GPU
layer->output_gpu = cuda_make_array(0, batch*outputs);
layer->delta_gpu = cuda_make_array(0, batch*outputs);
#endif
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
fprintf(stderr, "Detection Layer\n");
srand(0);
return layer;
}
void forward_detection_layer(const detection_layer layer, float *in)
void forward_detection_layer(const detection_layer layer, float *in, float *truth)
{
int out_h = detection_out_height(layer);
int out_w = detection_out_width(layer);
int i,j,fh, fw,c;
memset(layer.output, 0, layer->batch*layer->n*out_h*out_w*sizeof(float));
for(c = 0; c < layer.c; ++c){
for(i = 0; i < layer.h; ++i){
for(j = 0; j < layer.w; ++j){
float val = layer->input[j+(i + c*layer.h)*layer.w];
for(fh = 0; fh < layer.size; ++fh){
for(fw = 0; fw < layer.size; ++fw){
int h = i*layer.stride + fh;
int w = j*layer.stride + fw;
layer.output[w+(h+c/n*out_h)*out_w] += val*layer->filters[fw+(fh+c*layer.size)*layer.size];
}
}
}
int in_i = 0;
int out_i = 0;
int locations = get_detection_layer_locations(layer);
int i,j;
for(i = 0; i < layer.batch*locations; ++i){
int mask = (!truth || !truth[out_i + layer.classes - 1]);
float scale = 1;
if(layer.rescore) scale = in[in_i++];
for(j = 0; j < layer.classes; ++j){
layer.output[out_i++] = scale*in[in_i++];
}
softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
activate_array(layer.output+out_i, layer.coords, SIGMOID);
for(j = 0; j < layer.coords; ++j){
layer.output[out_i++] = mask*in[in_i++];
}
//printf("%d\n", mask);
//for(j = 0; j < layer.classes+layer.coords; ++j) printf("%f ", layer.output[i*(layer.classes+layer.coords)+j]);
//printf ("\n");
}
}
void backward_detection_layer(const detection_layer layer, float *delta)
void backward_detection_layer(const detection_layer layer, float *in, float *delta)
{
int locations = get_detection_layer_locations(layer);
int i,j;
int in_i = 0;
int out_i = 0;
for(i = 0; i < layer.batch*locations; ++i){
float scale = 1;
float latent_delta = 0;
if(layer.rescore) scale = in[in_i++];
for(j = 0; j < layer.classes; ++j){
latent_delta += in[in_i]*layer.delta[out_i];
delta[in_i++] = scale*layer.delta[out_i++];
}
for(j = 0; j < layer.coords; ++j){
delta[in_i++] = layer.delta[out_i++];
}
gradient_array(in + in_i - layer.coords, layer.coords, SIGMOID, layer.delta + out_i - layer.coords);
if(layer.rescore) delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
}
}
#ifdef GPU
void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth)
{
int outputs = get_detection_layer_output_size(layer);
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
float *truth_cpu = 0;
if(truth){
truth_cpu = calloc(layer.batch*outputs, sizeof(float));
cuda_pull_array(truth, truth_cpu, layer.batch*outputs);
}
cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
forward_detection_layer(layer, in_cpu, truth_cpu);
cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
free(in_cpu);
if(truth_cpu) free(truth_cpu);
}
void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta)
{
int outputs = get_detection_layer_output_size(layer);
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
backward_detection_layer(layer, in_cpu, delta_cpu);
cuda_push_array(delta, delta_cpu, layer.batch*layer.inputs);
free(in_cpu);
free(delta_cpu);
}
#endif

@ -3,38 +3,26 @@
typedef struct {
int batch;
int h,w,c;
int n;
int size;
int stride;
float *filters;
float *filter_updates;
float *filter_momentum;
float *biases;
float *bias_updates;
float *bias_momentum;
float *col_image;
float *delta;
int inputs;
int classes;
int coords;
int rescore;
float *output;
float *delta;
#ifdef GPU
cl_mem filters_cl;
cl_mem filter_updates_cl;
cl_mem filter_momentum_cl;
cl_mem biases_cl;
cl_mem bias_updates_cl;
cl_mem bias_momentum_cl;
cl_mem col_image_cl;
cl_mem delta_cl;
cl_mem output_cl;
float * output_gpu;
float * delta_gpu;
#endif
} detection_layer;
ACTIVATION activation;
} convolutional_layer;
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore);
void forward_detection_layer(const detection_layer layer, float *in, float *truth);
void backward_detection_layer(const detection_layer layer, float *in, float *delta);
int get_detection_layer_output_size(detection_layer layer);
#ifdef GPU
void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth);
void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta);
#endif
#endif

@ -13,7 +13,7 @@ float get_color(int c, int x, int max)
int j = ceil(ratio);
ratio -= i;
float r = (1-ratio) * colors[i][c] + ratio*colors[j][c];
printf("%f\n", r);
//printf("%f\n", r);
return r;
}

@ -9,6 +9,7 @@
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "deconvolutional_layer.h"
#include "detection_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
@ -29,6 +30,8 @@ char *get_layer_string(LAYER_TYPE a)
return "maxpool";
case SOFTMAX:
return "softmax";
case DETECTION:
return "detection";
case NORMALIZATION:
return "normalization";
case DROPOUT:
@ -76,6 +79,11 @@ void forward_network(network net, float *input, float *truth, int train)
forward_deconvolutional_layer(layer, input);
input = layer.output;
}
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
forward_detection_layer(layer, input, truth);
input = layer.output;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
forward_connected_layer(layer, input);
@ -152,6 +160,9 @@ float *get_network_output_layer(network net, int i)
} else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;
} else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
return layer.output;
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.output;
@ -193,6 +204,9 @@ float *get_network_delta_layer(network net, int i)
} else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta;
} else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
return layer.delta;
} else if(net.types[i] == DROPOUT){
if(i == 0) return 0;
return get_network_delta_layer(net, i-1);
@ -243,7 +257,7 @@ int get_predicted_class_network(network net)
return max_index(out, k);
}
void backward_network(network net, float *input)
void backward_network(network net, float *input, float *truth)
{
int i;
float *prev_input;
@ -272,6 +286,10 @@ void backward_network(network net, float *input)
dropout_layer layer = *(dropout_layer *)net.layers[i];
backward_dropout_layer(layer, prev_delta);
}
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
backward_detection_layer(layer, prev_input, prev_delta);
}
else if(net.types[i] == NORMALIZATION){
normalization_layer layer = *(normalization_layer *)net.layers[i];
if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
@ -297,7 +315,7 @@ float train_network_datum(network net, float *x, float *y)
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
#endif
forward_network(net, x, y, 1);
backward_network(net, x);
backward_network(net, x, y);
float error = get_network_cost(net);
update_network(net);
return error;
@ -351,7 +369,7 @@ float train_network_batch(network net, data d, int n)
float *x = d.X.vals[index];
float *y = d.y.vals[index];
forward_network(net, x, y, 1);
backward_network(net, x);
backward_network(net, x, y);
sum += get_network_cost(net);
}
update_network(net);
@ -381,7 +399,6 @@ void set_learning_network(network *net, float rate, float momentum, float decay)
}
}
void set_batch_network(network *net, int b)
{
net->batch = b;
@ -404,6 +421,9 @@ void set_batch_network(network *net, int b)
} else if(net->types[i] == DROPOUT){
dropout_layer *layer = (dropout_layer *) net->layers[i];
layer->batch = b;
} else if(net->types[i] == DETECTION){
detection_layer *layer = (detection_layer *) net->layers[i];
layer->batch = b;
}
else if(net->types[i] == FREEWEIGHT){
freeweight_layer *layer = (freeweight_layer *) net->layers[i];
@ -445,6 +465,9 @@ int get_network_input_size_layer(network net, int i)
} else if(net.types[i] == DROPOUT){
dropout_layer layer = *(dropout_layer *) net.layers[i];
return layer.inputs;
} else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *) net.layers[i];
return layer.inputs;
} else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *) net.layers[i];
return layer.c*layer.h*layer.w;
@ -473,6 +496,10 @@ int get_network_output_size_layer(network net, int i)
image output = get_deconvolutional_image(layer);
return output.h*output.w*output.c;
}
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
return get_detection_layer_output_size(layer);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
image output = get_maxpool_image(layer);

@ -11,6 +11,7 @@ typedef enum {
CONNECTED,
MAXPOOL,
SOFTMAX,
DETECTION,
NORMALIZATION,
DROPOUT,
FREEWEIGHT,
@ -48,7 +49,7 @@ char *get_layer_string(LAYER_TYPE a);
network make_network(int n, int batch);
void forward_network(network net, float *input, float *truth, int train);
void backward_network(network net, float *input);
void backward_network(network net, float *input, float *truth);
void update_network(network net);
float train_network(network net, data d);

@ -9,6 +9,7 @@ extern "C" {
#include "crop_layer.h"
#include "connected_layer.h"
#include "detection_layer.h"
#include "convolutional_layer.h"
#include "deconvolutional_layer.h"
#include "maxpool_layer.h"
@ -47,6 +48,11 @@ void forward_network_gpu(network net, float * input, float * truth, int train)
forward_connected_layer_gpu(layer, input);
input = layer.output_gpu;
}
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
forward_detection_layer_gpu(layer, input, truth);
input = layer.output_gpu;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
forward_maxpool_layer_gpu(layer, input);
@ -73,7 +79,7 @@ void forward_network_gpu(network net, float * input, float * truth, int train)
}
}
void backward_network_gpu(network net, float * input)
void backward_network_gpu(network net, float * input, float *truth)
{
int i;
float * prev_input;
@ -103,6 +109,10 @@ void backward_network_gpu(network net, float * input)
connected_layer layer = *(connected_layer *)net.layers[i];
backward_connected_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
backward_detection_layer_gpu(layer, prev_input, prev_delta);
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
backward_maxpool_layer_gpu(layer, prev_delta);
@ -148,6 +158,10 @@ float * get_network_output_gpu_layer(network net, int i)
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
return layer.output_gpu;
}
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
return layer.output_gpu;
}
else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i];
return layer.output_gpu;
@ -176,6 +190,10 @@ float * get_network_delta_gpu_layer(network net, int i)
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
return layer.delta_gpu;
}
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
return layer.delta_gpu;
}
else if(net.types[i] == DECONVOLUTIONAL){
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
return layer.delta_gpu;
@ -215,7 +233,7 @@ float train_network_datum_gpu(network net, float *x, float *y)
forward_network_gpu(net, *net.input_gpu, *net.truth_gpu, 1);
//printf("forw %f\n", sec(clock() - time));
//time = clock();
backward_network_gpu(net, *net.input_gpu);
backward_network_gpu(net, *net.input_gpu, *net.truth_gpu);
//printf("back %f\n", sec(clock() - time));
//time = clock();
update_network_gpu(net);
@ -244,6 +262,12 @@ float *get_network_output_layer_gpu(network net, int i)
cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);
return layer.output;
}
else if(net.types[i] == DETECTION){
detection_layer layer = *(detection_layer *)net.layers[i];
int outputs = get_detection_layer_output_size(layer);
cuda_pull_array(layer.output_gpu, layer.output, outputs*layer.batch);
return layer.output;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.output;

@ -53,6 +53,13 @@ int option_find_int(list *l, char *key, int def)
return def;
}
int option_find_int_quiet(list *l, char *key, int def)
{
char *v = option_find(l, key);
if(v) return atoi(v);
return def;
}
float option_find_float_quiet(list *l, char *key, float def)
{
char *v = option_find(l, key);

@ -13,6 +13,7 @@ void option_insert(list *l, char *key, char *val);
char *option_find(list *l, char *key);
char *option_find_str(list *l, char *key, char *def);
int option_find_int(list *l, char *key, int def);
int option_find_int_quiet(list *l, char *key, int def);
float option_find_float(list *l, char *key, float def);
float option_find_float_quiet(list *l, char *key, float def);
void option_unused(list *l);

@ -13,6 +13,7 @@
#include "normalization_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "detection_layer.h"
#include "freeweight_layer.h"
#include "list.h"
#include "option_list.h"
@ -32,6 +33,7 @@ int is_freeweight(section *s);
int is_softmax(section *s);
int is_crop(section *s);
int is_cost(section *s);
int is_detection(section *s);
int is_normalization(section *s);
list *read_cfg(char *filename);
@ -204,6 +206,24 @@ softmax_layer *parse_softmax(list *options, network *net, int count)
return layer;
}
detection_layer *parse_detection(list *options, network *net, int count)
{
int input;
if(count == 0){
input = option_find_int(options, "input",1);
net->batch = option_find_int(options, "batch",1);
net->seen = option_find_int(options, "seen",0);
}else{
input = get_network_output_size_layer(*net, count-1);
}
int coords = option_find_int(options, "coords", 1);
int classes = option_find_int(options, "classes", 1);
int rescore = option_find_int(options, "rescore", 1);
detection_layer *layer = make_detection_layer(net->batch, input, classes, coords, rescore);
option_unused(options);
return layer;
}
cost_layer *parse_cost(list *options, network *net, int count)
{
int input;
@ -368,6 +388,10 @@ network parse_network_cfg(char *filename)
cost_layer *layer = parse_cost(options, &net, count);
net.types[count] = COST;
net.layers[count] = layer;
}else if(is_detection(s)){
detection_layer *layer = parse_detection(options, &net, count);
net.types[count] = DETECTION;
net.layers[count] = layer;
}else if(is_softmax(s)){
softmax_layer *layer = parse_softmax(options, &net, count);
net.types[count] = SOFTMAX;
@ -410,6 +434,10 @@ int is_cost(section *s)
{
return (strcmp(s->type, "[cost]")==0);
}
int is_detection(section *s)
{
return (strcmp(s->type, "[detection]")==0);
}
int is_deconvolutional(section *s)
{
return (strcmp(s->type, "[deconv]")==0
@ -684,6 +712,13 @@ void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
fprintf(fp, "\n");
}
void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
{
fprintf(fp, "[detection]\n");
fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\n", l->classes, l->coords, l->rescore);
fprintf(fp, "\n");
}
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
{
fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
@ -815,6 +850,8 @@ void save_network(network net, char *filename)
print_normalization_cfg(fp, (normalization_layer *)net.layers[i], net, i);
else if(net.types[i] == SOFTMAX)
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
else if(net.types[i] == DETECTION)
print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
else if(net.types[i] == COST)
print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
}

@ -13,6 +13,7 @@ typedef struct {
#endif
} softmax_layer;
void softmax_array(float *input, int n, float *output);
softmax_layer *make_softmax_layer(int batch, int groups, int inputs);
void forward_softmax_layer(const softmax_layer layer, float *input);
void backward_softmax_layer(const softmax_layer layer, float *delta);

Loading…
Cancel
Save