mirror of https://github.com/AlexeyAB/darknet.git
pull/675/head
parent
d75854c0fd
commit
fc496d52bf
17 changed files with 476 additions and 27 deletions
@ -0,0 +1,158 @@ |
||||
from ctypes import * |
||||
import math |
||||
import random |
||||
|
||||
def sample(probs): |
||||
s = sum(probs) |
||||
probs = [a/s for a in probs] |
||||
r = random.uniform(0, 1) |
||||
for i in range(len(probs)): |
||||
r = r - probs[i] |
||||
if r <= 0: |
||||
return i |
||||
return len(probs)-1 |
||||
|
||||
def c_array(ctype, values): |
||||
arr = (ctype*len(values))() |
||||
arr[:] = values |
||||
return arr |
||||
|
||||
class BOX(Structure): |
||||
_fields_ = [("x", c_float), |
||||
("y", c_float), |
||||
("w", c_float), |
||||
("h", c_float)] |
||||
|
||||
class DETECTION(Structure): |
||||
_fields_ = [("bbox", BOX), |
||||
("classes", c_int), |
||||
("prob", POINTER(c_float)), |
||||
("mask", POINTER(c_float)), |
||||
("objectness", c_float), |
||||
("sort_class", c_int)] |
||||
|
||||
|
||||
class IMAGE(Structure): |
||||
_fields_ = [("w", c_int), |
||||
("h", c_int), |
||||
("c", c_int), |
||||
("data", POINTER(c_float))] |
||||
|
||||
class METADATA(Structure): |
||||
_fields_ = [("classes", c_int), |
||||
("names", POINTER(c_char_p))] |
||||
|
||||
|
||||
|
||||
#lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL) |
||||
#lib = CDLL("darknet.so", RTLD_GLOBAL) |
||||
lib = CDLL("yolo_cpp_dll.dll", RTLD_GLOBAL) |
||||
lib.network_width.argtypes = [c_void_p] |
||||
lib.network_width.restype = c_int |
||||
lib.network_height.argtypes = [c_void_p] |
||||
lib.network_height.restype = c_int |
||||
|
||||
predict = lib.network_predict |
||||
predict.argtypes = [c_void_p, POINTER(c_float)] |
||||
predict.restype = POINTER(c_float) |
||||
|
||||
set_gpu = lib.cuda_set_device |
||||
set_gpu.argtypes = [c_int] |
||||
|
||||
make_image = lib.make_image |
||||
make_image.argtypes = [c_int, c_int, c_int] |
||||
make_image.restype = IMAGE |
||||
|
||||
get_network_boxes = lib.get_network_boxes |
||||
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int] |
||||
get_network_boxes.restype = POINTER(DETECTION) |
||||
|
||||
make_network_boxes = lib.make_network_boxes |
||||
make_network_boxes.argtypes = [c_void_p] |
||||
make_network_boxes.restype = POINTER(DETECTION) |
||||
|
||||
free_detections = lib.free_detections |
||||
free_detections.argtypes = [POINTER(DETECTION), c_int] |
||||
|
||||
free_ptrs = lib.free_ptrs |
||||
free_ptrs.argtypes = [POINTER(c_void_p), c_int] |
||||
|
||||
network_predict = lib.network_predict |
||||
network_predict.argtypes = [c_void_p, POINTER(c_float)] |
||||
|
||||
reset_rnn = lib.reset_rnn |
||||
reset_rnn.argtypes = [c_void_p] |
||||
|
||||
load_net = lib.load_network |
||||
load_net.argtypes = [c_char_p, c_char_p, c_int] |
||||
load_net.restype = c_void_p |
||||
|
||||
do_nms_obj = lib.do_nms_obj |
||||
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] |
||||
|
||||
do_nms_sort = lib.do_nms_sort |
||||
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] |
||||
|
||||
free_image = lib.free_image |
||||
free_image.argtypes = [IMAGE] |
||||
|
||||
letterbox_image = lib.letterbox_image |
||||
letterbox_image.argtypes = [IMAGE, c_int, c_int] |
||||
letterbox_image.restype = IMAGE |
||||
|
||||
load_meta = lib.get_metadata |
||||
lib.get_metadata.argtypes = [c_char_p] |
||||
lib.get_metadata.restype = METADATA |
||||
|
||||
load_image = lib.load_image_color |
||||
load_image.argtypes = [c_char_p, c_int, c_int] |
||||
load_image.restype = IMAGE |
||||
|
||||
rgbgr_image = lib.rgbgr_image |
||||
rgbgr_image.argtypes = [IMAGE] |
||||
|
||||
predict_image = lib.network_predict_image |
||||
predict_image.argtypes = [c_void_p, IMAGE] |
||||
predict_image.restype = POINTER(c_float) |
||||
|
||||
def classify(net, meta, im): |
||||
out = predict_image(net, im) |
||||
res = [] |
||||
for i in range(meta.classes): |
||||
res.append((meta.names[i], out[i])) |
||||
res = sorted(res, key=lambda x: -x[1]) |
||||
return res |
||||
|
||||
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45): |
||||
im = load_image(image, 0, 0) |
||||
num = c_int(0) |
||||
pnum = pointer(num) |
||||
predict_image(net, im) |
||||
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum, 1) |
||||
num = pnum[0] |
||||
#if (nms): do_nms_obj(dets, num, meta.classes, nms); |
||||
if (nms): do_nms_sort(dets, num, meta.classes, nms); |
||||
|
||||
res = [] |
||||
for j in range(num): |
||||
for i in range(meta.classes): |
||||
if dets[j].prob[i] > 0: |
||||
b = dets[j].bbox |
||||
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h))) |
||||
res = sorted(res, key=lambda x: -x[1]) |
||||
free_image(im) |
||||
free_detections(dets, num) |
||||
return res |
||||
|
||||
if __name__ == "__main__": |
||||
#net = load_net("cfg/densenet201.cfg", "/home/pjreddie/trained/densenet201.weights", 0) |
||||
#im = load_image("data/wolf.jpg", 0, 0) |
||||
#meta = load_meta("cfg/imagenet1k.data") |
||||
#r = classify(net, meta, im) |
||||
#print r[:10] |
||||
net = load_net("cfg/yolov3.cfg", "yolov3.weights", 0) |
||||
meta = load_meta("data/coco.data") |
||||
r = detect(net, meta, "data/dog.jpg", 0.25) |
||||
print r |
||||
|
||||
|
@ -0,0 +1,8 @@ |
||||
rem download Python 2.7.14 from: https://www.python.org/downloads/release/python-2714/ |
||||
rem C:\Python27\Scripts\pip install numpy |
||||
|
||||
|
||||
C:\Python27\python.exe darknet.py |
||||
|
||||
|
||||
pause |
@ -0,0 +1,158 @@ |
||||
from ctypes import * |
||||
import math |
||||
import random |
||||
|
||||
def sample(probs): |
||||
s = sum(probs) |
||||
probs = [a/s for a in probs] |
||||
r = random.uniform(0, 1) |
||||
for i in range(len(probs)): |
||||
r = r - probs[i] |
||||
if r <= 0: |
||||
return i |
||||
return len(probs)-1 |
||||
|
||||
def c_array(ctype, values): |
||||
arr = (ctype*len(values))() |
||||
arr[:] = values |
||||
return arr |
||||
|
||||
class BOX(Structure): |
||||
_fields_ = [("x", c_float), |
||||
("y", c_float), |
||||
("w", c_float), |
||||
("h", c_float)] |
||||
|
||||
class DETECTION(Structure): |
||||
_fields_ = [("bbox", BOX), |
||||
("classes", c_int), |
||||
("prob", POINTER(c_float)), |
||||
("mask", POINTER(c_float)), |
||||
("objectness", c_float), |
||||
("sort_class", c_int)] |
||||
|
||||
|
||||
class IMAGE(Structure): |
||||
_fields_ = [("w", c_int), |
||||
("h", c_int), |
||||
("c", c_int), |
||||
("data", POINTER(c_float))] |
||||
|
||||
class METADATA(Structure): |
||||
_fields_ = [("classes", c_int), |
||||
("names", POINTER(c_char_p))] |
||||
|
||||
|
||||
|
||||
#lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL) |
||||
lib = CDLL("darknet.so", RTLD_GLOBAL) |
||||
#lib = CDLL("yolo_cpp_dll.dll", RTLD_GLOBAL) |
||||
lib.network_width.argtypes = [c_void_p] |
||||
lib.network_width.restype = c_int |
||||
lib.network_height.argtypes = [c_void_p] |
||||
lib.network_height.restype = c_int |
||||
|
||||
predict = lib.network_predict |
||||
predict.argtypes = [c_void_p, POINTER(c_float)] |
||||
predict.restype = POINTER(c_float) |
||||
|
||||
set_gpu = lib.cuda_set_device |
||||
set_gpu.argtypes = [c_int] |
||||
|
||||
make_image = lib.make_image |
||||
make_image.argtypes = [c_int, c_int, c_int] |
||||
make_image.restype = IMAGE |
||||
|
||||
get_network_boxes = lib.get_network_boxes |
||||
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int] |
||||
get_network_boxes.restype = POINTER(DETECTION) |
||||
|
||||
make_network_boxes = lib.make_network_boxes |
||||
make_network_boxes.argtypes = [c_void_p] |
||||
make_network_boxes.restype = POINTER(DETECTION) |
||||
|
||||
free_detections = lib.free_detections |
||||
free_detections.argtypes = [POINTER(DETECTION), c_int] |
||||
|
||||
free_ptrs = lib.free_ptrs |
||||
free_ptrs.argtypes = [POINTER(c_void_p), c_int] |
||||
|
||||
network_predict = lib.network_predict |
||||
network_predict.argtypes = [c_void_p, POINTER(c_float)] |
||||
|
||||
reset_rnn = lib.reset_rnn |
||||
reset_rnn.argtypes = [c_void_p] |
||||
|
||||
load_net = lib.load_network |
||||
load_net.argtypes = [c_char_p, c_char_p, c_int] |
||||
load_net.restype = c_void_p |
||||
|
||||
do_nms_obj = lib.do_nms_obj |
||||
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] |
||||
|
||||
do_nms_sort = lib.do_nms_sort |
||||
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] |
||||
|
||||
free_image = lib.free_image |
||||
free_image.argtypes = [IMAGE] |
||||
|
||||
letterbox_image = lib.letterbox_image |
||||
letterbox_image.argtypes = [IMAGE, c_int, c_int] |
||||
letterbox_image.restype = IMAGE |
||||
|
||||
load_meta = lib.get_metadata |
||||
lib.get_metadata.argtypes = [c_char_p] |
||||
lib.get_metadata.restype = METADATA |
||||
|
||||
load_image = lib.load_image_color |
||||
load_image.argtypes = [c_char_p, c_int, c_int] |
||||
load_image.restype = IMAGE |
||||
|
||||
rgbgr_image = lib.rgbgr_image |
||||
rgbgr_image.argtypes = [IMAGE] |
||||
|
||||
predict_image = lib.network_predict_image |
||||
predict_image.argtypes = [c_void_p, IMAGE] |
||||
predict_image.restype = POINTER(c_float) |
||||
|
||||
def classify(net, meta, im): |
||||
out = predict_image(net, im) |
||||
res = [] |
||||
for i in range(meta.classes): |
||||
res.append((meta.names[i], out[i])) |
||||
res = sorted(res, key=lambda x: -x[1]) |
||||
return res |
||||
|
||||
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45): |
||||
im = load_image(image, 0, 0) |
||||
num = c_int(0) |
||||
pnum = pointer(num) |
||||
predict_image(net, im) |
||||
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum, 1) |
||||
num = pnum[0] |
||||
#if (nms): do_nms_obj(dets, num, meta.classes, nms); |
||||
if (nms): do_nms_sort(dets, num, meta.classes, nms); |
||||
|
||||
res = [] |
||||
for j in range(num): |
||||
for i in range(meta.classes): |
||||
if dets[j].prob[i] > 0: |
||||
b = dets[j].bbox |
||||
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h))) |
||||
res = sorted(res, key=lambda x: -x[1]) |
||||
free_image(im) |
||||
free_detections(dets, num) |
||||
return res |
||||
|
||||
if __name__ == "__main__": |
||||
#net = load_net("cfg/densenet201.cfg", "/home/pjreddie/trained/densenet201.weights", 0) |
||||
#im = load_image("data/wolf.jpg", 0, 0) |
||||
#meta = load_meta("cfg/imagenet1k.data") |
||||
#r = classify(net, meta, im) |
||||
#print r[:10] |
||||
net = load_net("cfg/yolov3.cfg", "yolov3.weights", 0) |
||||
meta = load_meta("data/coco.data") |
||||
r = detect(net, meta, "data/dog.jpg", 0.25) |
||||
print r |
||||
|
||||
|
Loading…
Reference in new issue