mirror of https://github.com/AlexeyAB/darknet.git
parent
8fa9f44211
commit
fe6e694e17
3 changed files with 302 additions and 1 deletions
@ -0,0 +1,101 @@ |
|||||||
|
#!/usr/bin/env python |
||||||
|
|
||||||
|
# Adapt from -> |
||||||
|
# -------------------------------------------------------- |
||||||
|
# Fast R-CNN |
||||||
|
# Copyright (c) 2015 Microsoft |
||||||
|
# Licensed under The MIT License [see LICENSE for details] |
||||||
|
# Written by Ross Girshick |
||||||
|
# -------------------------------------------------------- |
||||||
|
# <- Written by Yaping Sun |
||||||
|
|
||||||
|
"""Reval = re-eval. Re-evaluate saved detections.""" |
||||||
|
|
||||||
|
import os, sys, argparse |
||||||
|
import numpy as np |
||||||
|
import cPickle |
||||||
|
|
||||||
|
from voc_eval import voc_eval |
||||||
|
|
||||||
|
def parse_args(): |
||||||
|
""" |
||||||
|
Parse input arguments |
||||||
|
""" |
||||||
|
parser = argparse.ArgumentParser(description='Re-evaluate results') |
||||||
|
parser.add_argument('output_dir', nargs=1, help='results directory', |
||||||
|
type=str) |
||||||
|
parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str) |
||||||
|
parser.add_argument('--year', dest='year', default='2017', type=str) |
||||||
|
parser.add_argument('--image_set', dest='image_set', default='test', type=str) |
||||||
|
|
||||||
|
parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str) |
||||||
|
|
||||||
|
if len(sys.argv) == 1: |
||||||
|
parser.print_help() |
||||||
|
sys.exit(1) |
||||||
|
|
||||||
|
args = parser.parse_args() |
||||||
|
return args |
||||||
|
|
||||||
|
def get_voc_results_file_template(image_set, out_dir = 'results'): |
||||||
|
filename = 'comp4_det_' + image_set + '_{:s}.txt' |
||||||
|
path = os.path.join(out_dir, filename) |
||||||
|
return path |
||||||
|
|
||||||
|
def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'): |
||||||
|
annopath = os.path.join( |
||||||
|
devkit_path, |
||||||
|
'VOC' + year, |
||||||
|
'Annotations', |
||||||
|
'{:s}.xml') |
||||||
|
imagesetfile = os.path.join( |
||||||
|
devkit_path, |
||||||
|
'VOC' + year, |
||||||
|
'ImageSets', |
||||||
|
'Main', |
||||||
|
image_set + '.txt') |
||||||
|
cachedir = os.path.join(devkit_path, 'annotations_cache') |
||||||
|
aps = [] |
||||||
|
# The PASCAL VOC metric changed in 2010 |
||||||
|
use_07_metric = True if int(year) < 2010 else False |
||||||
|
print 'VOC07 metric? ' + ('Yes' if use_07_metric else 'No') |
||||||
|
if not os.path.isdir(output_dir): |
||||||
|
os.mkdir(output_dir) |
||||||
|
for i, cls in enumerate(classes): |
||||||
|
if cls == '__background__': |
||||||
|
continue |
||||||
|
filename = get_voc_results_file_template(image_set).format(cls) |
||||||
|
rec, prec, ap = voc_eval( |
||||||
|
filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5, |
||||||
|
use_07_metric=use_07_metric) |
||||||
|
aps += [ap] |
||||||
|
print('AP for {} = {:.4f}'.format(cls, ap)) |
||||||
|
with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f: |
||||||
|
cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) |
||||||
|
print('Mean AP = {:.4f}'.format(np.mean(aps))) |
||||||
|
print('~~~~~~~~') |
||||||
|
print('Results:') |
||||||
|
for ap in aps: |
||||||
|
print('{:.3f}'.format(ap)) |
||||||
|
print('{:.3f}'.format(np.mean(aps))) |
||||||
|
print('~~~~~~~~') |
||||||
|
print('') |
||||||
|
print('--------------------------------------------------------------') |
||||||
|
print('Results computed with the **unofficial** Python eval code.') |
||||||
|
print('Results should be very close to the official MATLAB eval code.') |
||||||
|
print('-- Thanks, The Management') |
||||||
|
print('--------------------------------------------------------------') |
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__': |
||||||
|
args = parse_args() |
||||||
|
|
||||||
|
output_dir = os.path.abspath(args.output_dir[0]) |
||||||
|
with open(args.class_file, 'r') as f: |
||||||
|
lines = f.readlines() |
||||||
|
|
||||||
|
classes = [t.strip('\n') for t in lines] |
||||||
|
|
||||||
|
print 'Evaluating detections' |
||||||
|
do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir) |
@ -0,0 +1,200 @@ |
|||||||
|
# -------------------------------------------------------- |
||||||
|
# Fast/er R-CNN |
||||||
|
# Licensed under The MIT License [see LICENSE for details] |
||||||
|
# Written by Bharath Hariharan |
||||||
|
# -------------------------------------------------------- |
||||||
|
|
||||||
|
import xml.etree.ElementTree as ET |
||||||
|
import os |
||||||
|
import cPickle |
||||||
|
import numpy as np |
||||||
|
|
||||||
|
def parse_rec(filename): |
||||||
|
""" Parse a PASCAL VOC xml file """ |
||||||
|
tree = ET.parse(filename) |
||||||
|
objects = [] |
||||||
|
for obj in tree.findall('object'): |
||||||
|
obj_struct = {} |
||||||
|
obj_struct['name'] = obj.find('name').text |
||||||
|
#obj_struct['pose'] = obj.find('pose').text |
||||||
|
#obj_struct['truncated'] = int(obj.find('truncated').text) |
||||||
|
obj_struct['difficult'] = int(obj.find('difficult').text) |
||||||
|
bbox = obj.find('bndbox') |
||||||
|
obj_struct['bbox'] = [int(bbox.find('xmin').text), |
||||||
|
int(bbox.find('ymin').text), |
||||||
|
int(bbox.find('xmax').text), |
||||||
|
int(bbox.find('ymax').text)] |
||||||
|
objects.append(obj_struct) |
||||||
|
|
||||||
|
return objects |
||||||
|
|
||||||
|
def voc_ap(rec, prec, use_07_metric=False): |
||||||
|
""" ap = voc_ap(rec, prec, [use_07_metric]) |
||||||
|
Compute VOC AP given precision and recall. |
||||||
|
If use_07_metric is true, uses the |
||||||
|
VOC 07 11 point method (default:False). |
||||||
|
""" |
||||||
|
if use_07_metric: |
||||||
|
# 11 point metric |
||||||
|
ap = 0. |
||||||
|
for t in np.arange(0., 1.1, 0.1): |
||||||
|
if np.sum(rec >= t) == 0: |
||||||
|
p = 0 |
||||||
|
else: |
||||||
|
p = np.max(prec[rec >= t]) |
||||||
|
ap = ap + p / 11. |
||||||
|
else: |
||||||
|
# correct AP calculation |
||||||
|
# first append sentinel values at the end |
||||||
|
mrec = np.concatenate(([0.], rec, [1.])) |
||||||
|
mpre = np.concatenate(([0.], prec, [0.])) |
||||||
|
|
||||||
|
# compute the precision envelope |
||||||
|
for i in range(mpre.size - 1, 0, -1): |
||||||
|
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) |
||||||
|
|
||||||
|
# to calculate area under PR curve, look for points |
||||||
|
# where X axis (recall) changes value |
||||||
|
i = np.where(mrec[1:] != mrec[:-1])[0] |
||||||
|
|
||||||
|
# and sum (\Delta recall) * prec |
||||||
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
||||||
|
return ap |
||||||
|
|
||||||
|
def voc_eval(detpath, |
||||||
|
annopath, |
||||||
|
imagesetfile, |
||||||
|
classname, |
||||||
|
cachedir, |
||||||
|
ovthresh=0.5, |
||||||
|
use_07_metric=False): |
||||||
|
"""rec, prec, ap = voc_eval(detpath, |
||||||
|
annopath, |
||||||
|
imagesetfile, |
||||||
|
classname, |
||||||
|
[ovthresh], |
||||||
|
[use_07_metric]) |
||||||
|
|
||||||
|
Top level function that does the PASCAL VOC evaluation. |
||||||
|
|
||||||
|
detpath: Path to detections |
||||||
|
detpath.format(classname) should produce the detection results file. |
||||||
|
annopath: Path to annotations |
||||||
|
annopath.format(imagename) should be the xml annotations file. |
||||||
|
imagesetfile: Text file containing the list of images, one image per line. |
||||||
|
classname: Category name (duh) |
||||||
|
cachedir: Directory for caching the annotations |
||||||
|
[ovthresh]: Overlap threshold (default = 0.5) |
||||||
|
[use_07_metric]: Whether to use VOC07's 11 point AP computation |
||||||
|
(default False) |
||||||
|
""" |
||||||
|
# assumes detections are in detpath.format(classname) |
||||||
|
# assumes annotations are in annopath.format(imagename) |
||||||
|
# assumes imagesetfile is a text file with each line an image name |
||||||
|
# cachedir caches the annotations in a pickle file |
||||||
|
|
||||||
|
# first load gt |
||||||
|
if not os.path.isdir(cachedir): |
||||||
|
os.mkdir(cachedir) |
||||||
|
cachefile = os.path.join(cachedir, 'annots.pkl') |
||||||
|
# read list of images |
||||||
|
with open(imagesetfile, 'r') as f: |
||||||
|
lines = f.readlines() |
||||||
|
imagenames = [x.strip() for x in lines] |
||||||
|
|
||||||
|
if not os.path.isfile(cachefile): |
||||||
|
# load annots |
||||||
|
recs = {} |
||||||
|
for i, imagename in enumerate(imagenames): |
||||||
|
recs[imagename] = parse_rec(annopath.format(imagename)) |
||||||
|
if i % 100 == 0: |
||||||
|
print 'Reading annotation for {:d}/{:d}'.format( |
||||||
|
i + 1, len(imagenames)) |
||||||
|
# save |
||||||
|
print 'Saving cached annotations to {:s}'.format(cachefile) |
||||||
|
with open(cachefile, 'w') as f: |
||||||
|
cPickle.dump(recs, f) |
||||||
|
else: |
||||||
|
# load |
||||||
|
with open(cachefile, 'r') as f: |
||||||
|
recs = cPickle.load(f) |
||||||
|
|
||||||
|
# extract gt objects for this class |
||||||
|
class_recs = {} |
||||||
|
npos = 0 |
||||||
|
for imagename in imagenames: |
||||||
|
R = [obj for obj in recs[imagename] if obj['name'] == classname] |
||||||
|
bbox = np.array([x['bbox'] for x in R]) |
||||||
|
difficult = np.array([x['difficult'] for x in R]).astype(np.bool) |
||||||
|
det = [False] * len(R) |
||||||
|
npos = npos + sum(~difficult) |
||||||
|
class_recs[imagename] = {'bbox': bbox, |
||||||
|
'difficult': difficult, |
||||||
|
'det': det} |
||||||
|
|
||||||
|
# read dets |
||||||
|
detfile = detpath.format(classname) |
||||||
|
with open(detfile, 'r') as f: |
||||||
|
lines = f.readlines() |
||||||
|
|
||||||
|
splitlines = [x.strip().split(' ') for x in lines] |
||||||
|
image_ids = [x[0] for x in splitlines] |
||||||
|
confidence = np.array([float(x[1]) for x in splitlines]) |
||||||
|
BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) |
||||||
|
|
||||||
|
# sort by confidence |
||||||
|
sorted_ind = np.argsort(-confidence) |
||||||
|
sorted_scores = np.sort(-confidence) |
||||||
|
BB = BB[sorted_ind, :] |
||||||
|
image_ids = [image_ids[x] for x in sorted_ind] |
||||||
|
|
||||||
|
# go down dets and mark TPs and FPs |
||||||
|
nd = len(image_ids) |
||||||
|
tp = np.zeros(nd) |
||||||
|
fp = np.zeros(nd) |
||||||
|
for d in range(nd): |
||||||
|
R = class_recs[image_ids[d]] |
||||||
|
bb = BB[d, :].astype(float) |
||||||
|
ovmax = -np.inf |
||||||
|
BBGT = R['bbox'].astype(float) |
||||||
|
|
||||||
|
if BBGT.size > 0: |
||||||
|
# compute overlaps |
||||||
|
# intersection |
||||||
|
ixmin = np.maximum(BBGT[:, 0], bb[0]) |
||||||
|
iymin = np.maximum(BBGT[:, 1], bb[1]) |
||||||
|
ixmax = np.minimum(BBGT[:, 2], bb[2]) |
||||||
|
iymax = np.minimum(BBGT[:, 3], bb[3]) |
||||||
|
iw = np.maximum(ixmax - ixmin + 1., 0.) |
||||||
|
ih = np.maximum(iymax - iymin + 1., 0.) |
||||||
|
inters = iw * ih |
||||||
|
|
||||||
|
# union |
||||||
|
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + |
||||||
|
(BBGT[:, 2] - BBGT[:, 0] + 1.) * |
||||||
|
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) |
||||||
|
|
||||||
|
overlaps = inters / uni |
||||||
|
ovmax = np.max(overlaps) |
||||||
|
jmax = np.argmax(overlaps) |
||||||
|
|
||||||
|
if ovmax > ovthresh: |
||||||
|
if not R['difficult'][jmax]: |
||||||
|
if not R['det'][jmax]: |
||||||
|
tp[d] = 1. |
||||||
|
R['det'][jmax] = 1 |
||||||
|
else: |
||||||
|
fp[d] = 1. |
||||||
|
else: |
||||||
|
fp[d] = 1. |
||||||
|
|
||||||
|
# compute precision recall |
||||||
|
fp = np.cumsum(fp) |
||||||
|
tp = np.cumsum(tp) |
||||||
|
rec = tp / float(npos) |
||||||
|
# avoid divide by zero in case the first detection matches a difficult |
||||||
|
# ground truth |
||||||
|
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) |
||||||
|
ap = voc_ap(rec, prec, use_07_metric) |
||||||
|
|
||||||
|
return rec, prec, ap |
Loading…
Reference in new issue