mirror of https://github.com/AlexeyAB/darknet.git
parent
8fa9f44211
commit
fe6e694e17
3 changed files with 302 additions and 1 deletions
@ -0,0 +1,101 @@ |
||||
#!/usr/bin/env python |
||||
|
||||
# Adapt from -> |
||||
# -------------------------------------------------------- |
||||
# Fast R-CNN |
||||
# Copyright (c) 2015 Microsoft |
||||
# Licensed under The MIT License [see LICENSE for details] |
||||
# Written by Ross Girshick |
||||
# -------------------------------------------------------- |
||||
# <- Written by Yaping Sun |
||||
|
||||
"""Reval = re-eval. Re-evaluate saved detections.""" |
||||
|
||||
import os, sys, argparse |
||||
import numpy as np |
||||
import cPickle |
||||
|
||||
from voc_eval import voc_eval |
||||
|
||||
def parse_args(): |
||||
""" |
||||
Parse input arguments |
||||
""" |
||||
parser = argparse.ArgumentParser(description='Re-evaluate results') |
||||
parser.add_argument('output_dir', nargs=1, help='results directory', |
||||
type=str) |
||||
parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str) |
||||
parser.add_argument('--year', dest='year', default='2017', type=str) |
||||
parser.add_argument('--image_set', dest='image_set', default='test', type=str) |
||||
|
||||
parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str) |
||||
|
||||
if len(sys.argv) == 1: |
||||
parser.print_help() |
||||
sys.exit(1) |
||||
|
||||
args = parser.parse_args() |
||||
return args |
||||
|
||||
def get_voc_results_file_template(image_set, out_dir = 'results'): |
||||
filename = 'comp4_det_' + image_set + '_{:s}.txt' |
||||
path = os.path.join(out_dir, filename) |
||||
return path |
||||
|
||||
def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'): |
||||
annopath = os.path.join( |
||||
devkit_path, |
||||
'VOC' + year, |
||||
'Annotations', |
||||
'{:s}.xml') |
||||
imagesetfile = os.path.join( |
||||
devkit_path, |
||||
'VOC' + year, |
||||
'ImageSets', |
||||
'Main', |
||||
image_set + '.txt') |
||||
cachedir = os.path.join(devkit_path, 'annotations_cache') |
||||
aps = [] |
||||
# The PASCAL VOC metric changed in 2010 |
||||
use_07_metric = True if int(year) < 2010 else False |
||||
print 'VOC07 metric? ' + ('Yes' if use_07_metric else 'No') |
||||
if not os.path.isdir(output_dir): |
||||
os.mkdir(output_dir) |
||||
for i, cls in enumerate(classes): |
||||
if cls == '__background__': |
||||
continue |
||||
filename = get_voc_results_file_template(image_set).format(cls) |
||||
rec, prec, ap = voc_eval( |
||||
filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5, |
||||
use_07_metric=use_07_metric) |
||||
aps += [ap] |
||||
print('AP for {} = {:.4f}'.format(cls, ap)) |
||||
with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f: |
||||
cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) |
||||
print('Mean AP = {:.4f}'.format(np.mean(aps))) |
||||
print('~~~~~~~~') |
||||
print('Results:') |
||||
for ap in aps: |
||||
print('{:.3f}'.format(ap)) |
||||
print('{:.3f}'.format(np.mean(aps))) |
||||
print('~~~~~~~~') |
||||
print('') |
||||
print('--------------------------------------------------------------') |
||||
print('Results computed with the **unofficial** Python eval code.') |
||||
print('Results should be very close to the official MATLAB eval code.') |
||||
print('-- Thanks, The Management') |
||||
print('--------------------------------------------------------------') |
||||
|
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
args = parse_args() |
||||
|
||||
output_dir = os.path.abspath(args.output_dir[0]) |
||||
with open(args.class_file, 'r') as f: |
||||
lines = f.readlines() |
||||
|
||||
classes = [t.strip('\n') for t in lines] |
||||
|
||||
print 'Evaluating detections' |
||||
do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir) |
@ -0,0 +1,200 @@ |
||||
# -------------------------------------------------------- |
||||
# Fast/er R-CNN |
||||
# Licensed under The MIT License [see LICENSE for details] |
||||
# Written by Bharath Hariharan |
||||
# -------------------------------------------------------- |
||||
|
||||
import xml.etree.ElementTree as ET |
||||
import os |
||||
import cPickle |
||||
import numpy as np |
||||
|
||||
def parse_rec(filename): |
||||
""" Parse a PASCAL VOC xml file """ |
||||
tree = ET.parse(filename) |
||||
objects = [] |
||||
for obj in tree.findall('object'): |
||||
obj_struct = {} |
||||
obj_struct['name'] = obj.find('name').text |
||||
#obj_struct['pose'] = obj.find('pose').text |
||||
#obj_struct['truncated'] = int(obj.find('truncated').text) |
||||
obj_struct['difficult'] = int(obj.find('difficult').text) |
||||
bbox = obj.find('bndbox') |
||||
obj_struct['bbox'] = [int(bbox.find('xmin').text), |
||||
int(bbox.find('ymin').text), |
||||
int(bbox.find('xmax').text), |
||||
int(bbox.find('ymax').text)] |
||||
objects.append(obj_struct) |
||||
|
||||
return objects |
||||
|
||||
def voc_ap(rec, prec, use_07_metric=False): |
||||
""" ap = voc_ap(rec, prec, [use_07_metric]) |
||||
Compute VOC AP given precision and recall. |
||||
If use_07_metric is true, uses the |
||||
VOC 07 11 point method (default:False). |
||||
""" |
||||
if use_07_metric: |
||||
# 11 point metric |
||||
ap = 0. |
||||
for t in np.arange(0., 1.1, 0.1): |
||||
if np.sum(rec >= t) == 0: |
||||
p = 0 |
||||
else: |
||||
p = np.max(prec[rec >= t]) |
||||
ap = ap + p / 11. |
||||
else: |
||||
# correct AP calculation |
||||
# first append sentinel values at the end |
||||
mrec = np.concatenate(([0.], rec, [1.])) |
||||
mpre = np.concatenate(([0.], prec, [0.])) |
||||
|
||||
# compute the precision envelope |
||||
for i in range(mpre.size - 1, 0, -1): |
||||
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) |
||||
|
||||
# to calculate area under PR curve, look for points |
||||
# where X axis (recall) changes value |
||||
i = np.where(mrec[1:] != mrec[:-1])[0] |
||||
|
||||
# and sum (\Delta recall) * prec |
||||
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) |
||||
return ap |
||||
|
||||
def voc_eval(detpath, |
||||
annopath, |
||||
imagesetfile, |
||||
classname, |
||||
cachedir, |
||||
ovthresh=0.5, |
||||
use_07_metric=False): |
||||
"""rec, prec, ap = voc_eval(detpath, |
||||
annopath, |
||||
imagesetfile, |
||||
classname, |
||||
[ovthresh], |
||||
[use_07_metric]) |
||||
|
||||
Top level function that does the PASCAL VOC evaluation. |
||||
|
||||
detpath: Path to detections |
||||
detpath.format(classname) should produce the detection results file. |
||||
annopath: Path to annotations |
||||
annopath.format(imagename) should be the xml annotations file. |
||||
imagesetfile: Text file containing the list of images, one image per line. |
||||
classname: Category name (duh) |
||||
cachedir: Directory for caching the annotations |
||||
[ovthresh]: Overlap threshold (default = 0.5) |
||||
[use_07_metric]: Whether to use VOC07's 11 point AP computation |
||||
(default False) |
||||
""" |
||||
# assumes detections are in detpath.format(classname) |
||||
# assumes annotations are in annopath.format(imagename) |
||||
# assumes imagesetfile is a text file with each line an image name |
||||
# cachedir caches the annotations in a pickle file |
||||
|
||||
# first load gt |
||||
if not os.path.isdir(cachedir): |
||||
os.mkdir(cachedir) |
||||
cachefile = os.path.join(cachedir, 'annots.pkl') |
||||
# read list of images |
||||
with open(imagesetfile, 'r') as f: |
||||
lines = f.readlines() |
||||
imagenames = [x.strip() for x in lines] |
||||
|
||||
if not os.path.isfile(cachefile): |
||||
# load annots |
||||
recs = {} |
||||
for i, imagename in enumerate(imagenames): |
||||
recs[imagename] = parse_rec(annopath.format(imagename)) |
||||
if i % 100 == 0: |
||||
print 'Reading annotation for {:d}/{:d}'.format( |
||||
i + 1, len(imagenames)) |
||||
# save |
||||
print 'Saving cached annotations to {:s}'.format(cachefile) |
||||
with open(cachefile, 'w') as f: |
||||
cPickle.dump(recs, f) |
||||
else: |
||||
# load |
||||
with open(cachefile, 'r') as f: |
||||
recs = cPickle.load(f) |
||||
|
||||
# extract gt objects for this class |
||||
class_recs = {} |
||||
npos = 0 |
||||
for imagename in imagenames: |
||||
R = [obj for obj in recs[imagename] if obj['name'] == classname] |
||||
bbox = np.array([x['bbox'] for x in R]) |
||||
difficult = np.array([x['difficult'] for x in R]).astype(np.bool) |
||||
det = [False] * len(R) |
||||
npos = npos + sum(~difficult) |
||||
class_recs[imagename] = {'bbox': bbox, |
||||
'difficult': difficult, |
||||
'det': det} |
||||
|
||||
# read dets |
||||
detfile = detpath.format(classname) |
||||
with open(detfile, 'r') as f: |
||||
lines = f.readlines() |
||||
|
||||
splitlines = [x.strip().split(' ') for x in lines] |
||||
image_ids = [x[0] for x in splitlines] |
||||
confidence = np.array([float(x[1]) for x in splitlines]) |
||||
BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) |
||||
|
||||
# sort by confidence |
||||
sorted_ind = np.argsort(-confidence) |
||||
sorted_scores = np.sort(-confidence) |
||||
BB = BB[sorted_ind, :] |
||||
image_ids = [image_ids[x] for x in sorted_ind] |
||||
|
||||
# go down dets and mark TPs and FPs |
||||
nd = len(image_ids) |
||||
tp = np.zeros(nd) |
||||
fp = np.zeros(nd) |
||||
for d in range(nd): |
||||
R = class_recs[image_ids[d]] |
||||
bb = BB[d, :].astype(float) |
||||
ovmax = -np.inf |
||||
BBGT = R['bbox'].astype(float) |
||||
|
||||
if BBGT.size > 0: |
||||
# compute overlaps |
||||
# intersection |
||||
ixmin = np.maximum(BBGT[:, 0], bb[0]) |
||||
iymin = np.maximum(BBGT[:, 1], bb[1]) |
||||
ixmax = np.minimum(BBGT[:, 2], bb[2]) |
||||
iymax = np.minimum(BBGT[:, 3], bb[3]) |
||||
iw = np.maximum(ixmax - ixmin + 1., 0.) |
||||
ih = np.maximum(iymax - iymin + 1., 0.) |
||||
inters = iw * ih |
||||
|
||||
# union |
||||
uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + |
||||
(BBGT[:, 2] - BBGT[:, 0] + 1.) * |
||||
(BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) |
||||
|
||||
overlaps = inters / uni |
||||
ovmax = np.max(overlaps) |
||||
jmax = np.argmax(overlaps) |
||||
|
||||
if ovmax > ovthresh: |
||||
if not R['difficult'][jmax]: |
||||
if not R['det'][jmax]: |
||||
tp[d] = 1. |
||||
R['det'][jmax] = 1 |
||||
else: |
||||
fp[d] = 1. |
||||
else: |
||||
fp[d] = 1. |
||||
|
||||
# compute precision recall |
||||
fp = np.cumsum(fp) |
||||
tp = np.cumsum(tp) |
||||
rec = tp / float(npos) |
||||
# avoid divide by zero in case the first detection matches a difficult |
||||
# ground truth |
||||
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) |
||||
ap = voc_ap(rec, prec, use_07_metric) |
||||
|
||||
return rec, prec, ap |
Loading…
Reference in new issue