#include "network.h" #include "region_layer.h" #include "cost_layer.h" #include "utils.h" #include "parser.h" #include "box.h" #include "demo.h" #include "option_list.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #include "opencv2/core/core_c.h" //#include "opencv2/core/core.hpp" #include "opencv2/core/version.hpp" #include "opencv2/imgproc/imgproc_c.h" #ifndef CV_VERSION_EPOCH #include "opencv2/videoio/videoio_c.h" #define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR)""CVAUX_STR(CV_VERSION_REVISION) #pragma comment(lib, "opencv_world" OPENCV_VERSION ".lib") #else #define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)""CVAUX_STR(CV_VERSION_MAJOR)""CVAUX_STR(CV_VERSION_MINOR) #pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") #endif IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size); void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches); #endif // OPENCV static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show) { list *options = read_data_cfg(datacfg); char *train_images = option_find_str(options, "train", "data/train.list"); char *backup_directory = option_find_str(options, "backup", "/backup/"); srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network *nets = calloc(ngpus, sizeof(network)); srand(time(0)); int seed = rand(); int i; for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&nets[i], weightfile); } if(clear) *nets[i].seen = 0; nets[i].learning_rate *= ngpus; } srand(time(0)); network net = nets[0]; int imgs = net.batch * net.subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); data train, buffer; layer l = net.layers[net.n - 1]; int classes = l.classes; float jitter = l.jitter; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); int init_w = net.w; int init_h = net.h; int iter_save; iter_save = get_current_batch(net); load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.jitter = jitter; args.num_boxes = l.max_boxes; args.small_object = l.small_object; args.d = &buffer; args.type = DETECTION_DATA; args.threads = 8; // 64 args.angle = net.angle; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; #ifdef OPENCV IplImage* img = NULL; float max_img_loss = 5; int number_of_lines = 100; int img_size = 1000; if (!dont_show) img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size); #endif //OPENCV pthread_t load_thread = load_data(args); clock_t time; int count = 0; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ if(l.random && count++%10 == 0){ printf("Resizing\n"); int dim = (rand() % 12 + (init_w/32 - 5)) * 32; // +-160 //if (get_current_batch(net)+100 > net.max_batches) dim = 544; //int dim = (rand() % 4 + 16) * 32; printf("%d\n", dim); args.w = dim; args.h = dim; pthread_join(load_thread, 0); train = buffer; free_data(train); load_thread = load_data(args); for(i = 0; i < ngpus; ++i){ resize_network(nets + i, dim, dim); } net = nets[0]; } time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); /* int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); if(!b.x) break; printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); } image im = float_to_image(448, 448, 3, train.X.vals[10]); int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h); draw_bbox(im, b, 8, 1,0,0); } save_image(im, "truth11"); */ printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if (avg_loss < 0) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; i = get_current_batch(net); printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); #ifdef OPENCV if(!dont_show) draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches); #endif // OPENCV //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) { //if (i % 100 == 0) { if(i >= (iter_save + 100)) { iter_save = i; #ifdef GPU if (ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } #ifdef GPU if(ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); //cvReleaseImage(&img); //cvDestroyAllWindows(); } static int get_coco_image_id(char *filename) { char *p = strrchr(filename, '_'); return atoi(p+1); } static void print_cocos(FILE *fp, char *image_path, box *boxes, float **probs, int num_boxes, int classes, int w, int h) { int i, j; int image_id = get_coco_image_id(image_path); for(i = 0; i < num_boxes; ++i){ float xmin = boxes[i].x - boxes[i].w/2.; float xmax = boxes[i].x + boxes[i].w/2.; float ymin = boxes[i].y - boxes[i].h/2.; float ymax = boxes[i].y + boxes[i].h/2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; float bx = xmin; float by = ymin; float bw = xmax - xmin; float bh = ymax - ymin; for(j = 0; j < classes; ++j){ if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]); } } } void print_detector_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h) { int i, j; for(i = 0; i < total; ++i){ float xmin = boxes[i].x - boxes[i].w/2.; float xmax = boxes[i].x + boxes[i].w/2.; float ymin = boxes[i].y - boxes[i].h/2.; float ymax = boxes[i].y + boxes[i].h/2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; for(j = 0; j < classes; ++j){ if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j], xmin, ymin, xmax, ymax); } } } void print_imagenet_detections(FILE *fp, int id, box *boxes, float **probs, int total, int classes, int w, int h) { int i, j; for(i = 0; i < total; ++i){ float xmin = boxes[i].x - boxes[i].w/2.; float xmax = boxes[i].x + boxes[i].w/2.; float ymin = boxes[i].y - boxes[i].h/2.; float ymax = boxes[i].y + boxes[i].h/2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; for(j = 0; j < classes; ++j){ int class_id = j; if (probs[i][class_id]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class_id], xmin, ymin, xmax, ymax); } } } void validate_detector(char *datacfg, char *cfgfile, char *weightfile) { int j; list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.list"); char *name_list = option_find_str(options, "names", "data/names.list"); char *prefix = option_find_str(options, "results", "results"); char **names = get_labels(name_list); char *mapf = option_find_str(options, "map", 0); int *map = 0; if (mapf) map = read_map(mapf); network net = parse_network_cfg_custom(cfgfile, 1); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); char *base = "comp4_det_test_"; list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n-1]; int classes = l.classes; char buff[1024]; char *type = option_find_str(options, "eval", "voc"); FILE *fp = 0; FILE **fps = 0; int coco = 0; int imagenet = 0; if(0==strcmp(type, "coco")){ snprintf(buff, 1024, "%s/coco_results.json", prefix); fp = fopen(buff, "w"); fprintf(fp, "[\n"); coco = 1; } else if(0==strcmp(type, "imagenet")){ snprintf(buff, 1024, "%s/imagenet-detection.txt", prefix); fp = fopen(buff, "w"); imagenet = 1; classes = 200; } else { fps = calloc(classes, sizeof(FILE *)); for(j = 0; j < classes; ++j){ snprintf(buff, 1024, "%s/%s%s.txt", prefix, base, names[j]); fps[j] = fopen(buff, "w"); } } box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; int t; float thresh = .005; float nms = .45; int detection_count = 0; int nthreads = 4; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); load_args args = {0}; args.w = net.w; args.h = net.h; args.type = IMAGE_DATA; for(t = 0; t < nthreads; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } time_t start = time(0); for(i = nthreads; i < m+nthreads; i += nthreads){ fprintf(stderr, "%d\n", i); for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for(t = 0; t < nthreads && i+t < m; ++t){ args.path = paths[i+t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ char *path = paths[i+t-nthreads]; char *id = basecfg(path); float *X = val_resized[t].data; network_predict(net, X); int w = val[t].w; int h = val[t].h; get_region_boxes(l, w, h, thresh, probs, boxes, 0, map); if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); int x, y; for (x = 0; x < (l.w*l.h*l.n); ++x) { for (y = 0; y < classes; ++y) { if (probs[x][y]) ++detection_count; } } if (coco){ print_cocos(fp, path, boxes, probs, l.w*l.h*l.n, classes, w, h); } else if (imagenet){ print_imagenet_detections(fp, i+t-nthreads+1, boxes, probs, l.w*l.h*l.n, classes, w, h); } else { print_detector_detections(fps, id, boxes, probs, l.w*l.h*l.n, classes, w, h); } free(id); free_image(val[t]); free_image(val_resized[t]); } } for(j = 0; j < classes; ++j){ if(fps) fclose(fps[j]); } if(coco){ fseek(fp, -2, SEEK_CUR); fprintf(fp, "\n]\n"); fclose(fp); } printf("\n detection_count = %d \n", detection_count); fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); } void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) { network net = parse_network_cfg_custom(cfgfile, 1); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.txt"); list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n-1]; int classes = l.classes; int j, k; box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i=0; float thresh = .001;// .001; // .2; float iou_thresh = .5; float nms = .4; int detection_count = 0, truth_count = 0; int total = 0; int correct = 0; int proposals = 0; float avg_iou = 0; for(i = 0; i < m; ++i){ char *path = paths[i]; image orig = load_image_color(path, 0, 0); image sized = resize_image(orig, net.w, net.h); char *id = basecfg(path); network_predict(net, sized.data); get_region_boxes(l, 1, 1, thresh, probs, boxes, 1, 0); if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms); char labelpath[4096]; find_replace(path, "images", "labels", labelpath); find_replace(labelpath, "JPEGImages", "labels", labelpath); find_replace(labelpath, ".jpg", ".txt", labelpath); find_replace(labelpath, ".JPEG", ".txt", labelpath); find_replace(labelpath, ".png", ".txt", labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); truth_count += num_labels; for(k = 0; k < l.w*l.h*l.n; ++k){ if(probs[k][0] > thresh){ ++proposals; } } for (j = 0; j < num_labels; ++j) { ++total; box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; float best_iou = 0; for (k = 0; k < l.w*l.h*l.n; ++k) { float iou = box_iou(boxes[k], t); if (probs[k][0] > thresh && iou > best_iou) { best_iou = iou; } } avg_iou += best_iou; if(best_iou > iou_thresh){ ++correct; } } fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); free(id); free_image(orig); free_image(sized); } printf("\n truth_count = %d \n", truth_count); } typedef struct { box b; float p; int class_id; int image_index; int truth_flag; int unique_truth_index; } box_prob; int detections_comparator(const void *pa, const void *pb) { box_prob a = *(box_prob *)pa; box_prob b = *(box_prob *)pb; float diff = a.p - b.p; if (diff < 0) return 1; else if (diff > 0) return -1; return 0; } void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou) { int j; list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.txt"); char *difficult_valid_images = option_find_str(options, "difficult", NULL); char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); char *mapf = option_find_str(options, "map", 0); int *map = 0; if (mapf) map = read_map(mapf); network net = parse_network_cfg_custom(cfgfile, 1); if (weightfile) { load_weights(&net, weightfile); } set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); char **paths_dif = NULL; if (difficult_valid_images) { list *plist_dif = get_paths(difficult_valid_images); paths_dif = (char **)list_to_array(plist_dif); } layer l = net.layers[net.n - 1]; int classes = l.classes; box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); int m = plist->size; int i = 0; int t; const float thresh = .005; const float nms = .45; const float iou_thresh = 0.5; int nthreads = 4; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); load_args args = { 0 }; args.w = net.w; args.h = net.h; args.type = IMAGE_DATA; //const float thresh_calc_avg_iou = 0.24; float avg_iou = 0; int tp_for_thresh = 0; int fp_for_thresh = 0; box_prob *detections = calloc(1, sizeof(box_prob)); int detections_count = 0; int unique_truth_count = 0; int *truth_classes_count = calloc(classes, sizeof(int)); for (t = 0; t < nthreads; ++t) { args.path = paths[i + t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } time_t start = time(0); for (i = nthreads; i < m + nthreads; i += nthreads) { fprintf(stderr, "%d\n", i); for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for (t = 0; t < nthreads && i + t < m; ++t) { args.path = paths[i + t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { const int image_index = i + t - nthreads; char *path = paths[image_index]; char *id = basecfg(path); float *X = val_resized[t].data; network_predict(net, X); get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map); if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, classes, nms); char labelpath[4096]; find_replace(path, "images", "labels", labelpath); find_replace(labelpath, "JPEGImages", "labels", labelpath); find_replace(labelpath, ".jpg", ".txt", labelpath); find_replace(labelpath, ".JPEG", ".txt", labelpath); find_replace(labelpath, ".png", ".txt", labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); int i, j; for (j = 0; j < num_labels; ++j) { truth_classes_count[truth[j].id]++; } // difficult box_label *truth_dif = NULL; int num_labels_dif = 0; if (paths_dif) { char *path_dif = paths_dif[image_index]; char labelpath_dif[4096]; find_replace(path_dif, "images", "labels", labelpath_dif); find_replace(labelpath_dif, "JPEGImages", "labels", labelpath_dif); find_replace(labelpath_dif, ".jpg", ".txt", labelpath_dif); find_replace(labelpath_dif, ".JPEG", ".txt", labelpath_dif); find_replace(labelpath_dif, ".png", ".txt", labelpath_dif); truth_dif = read_boxes(labelpath_dif, &num_labels_dif); } for (i = 0; i < (l.w*l.h*l.n); ++i) { int class_id; for (class_id = 0; class_id < classes; ++class_id) { float prob = probs[i][class_id]; if (prob > 0) { detections_count++; detections = realloc(detections, detections_count * sizeof(box_prob)); detections[detections_count - 1].b = boxes[i]; detections[detections_count - 1].p = prob; detections[detections_count - 1].image_index = image_index; detections[detections_count - 1].class_id = class_id; detections[detections_count - 1].truth_flag = 0; detections[detections_count - 1].unique_truth_index = -1; int truth_index = -1; float max_iou = 0; for (j = 0; j < num_labels; ++j) { box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n", // box_iou(boxes[i], t), prob, class_id, truth[j].id); float current_iou = box_iou(boxes[i], t); if (current_iou > iou_thresh && class_id == truth[j].id) { if (current_iou > max_iou) { max_iou = current_iou; truth_index = unique_truth_count + j; } } } // best IoU if (truth_index > -1) { detections[detections_count - 1].truth_flag = 1; detections[detections_count - 1].unique_truth_index = truth_index; } else { // if object is difficult then remove detection for (j = 0; j < num_labels_dif; ++j) { box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h }; float current_iou = box_iou(boxes[i], t); if (current_iou > iou_thresh && class_id == truth_dif[j].id) { --detections_count; break; } } } // calc avg IoU, true-positives, false-positives for required Threshold if (prob > thresh_calc_avg_iou) { if (truth_index > -1) { avg_iou += max_iou; ++tp_for_thresh; } else fp_for_thresh++; } } } } unique_truth_count += num_labels; free(id); free_image(val[t]); free_image(val_resized[t]); } } avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); // SORT(detections) qsort(detections, detections_count, sizeof(box_prob), detections_comparator); typedef struct { double precision; double recall; int tp, fp, fn; } pr_t; // for PR-curve pr_t **pr = calloc(classes, sizeof(pr_t*)); for (i = 0; i < classes; ++i) { pr[i] = calloc(detections_count, sizeof(pr_t)); } printf("detections_count = %d, unique_truth_count = %d \n", detections_count, unique_truth_count); int *truth_flags = calloc(unique_truth_count, sizeof(int)); int rank; for (rank = 0; rank < detections_count; ++rank) { if(rank % 100 == 0) printf(" rank = %d of ranks = %d \r", rank, detections_count); if (rank > 0) { int class_id; for (class_id = 0; class_id < classes; ++class_id) { pr[class_id][rank].tp = pr[class_id][rank - 1].tp; pr[class_id][rank].fp = pr[class_id][rank - 1].fp; } } box_prob d = detections[rank]; // if (detected && isn't detected before) if (d.truth_flag == 1) { if (truth_flags[d.unique_truth_index] == 0) { truth_flags[d.unique_truth_index] = 1; pr[d.class_id][rank].tp++; // true-positive } } else { pr[d.class_id][rank].fp++; // false-positive } for (i = 0; i < classes; ++i) { const int tp = pr[i][rank].tp; const int fp = pr[i][rank].fp; const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive pr[i][rank].fn = fn; if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp); else pr[i][rank].precision = 0; if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn); else pr[i][rank].recall = 0; } } free(truth_flags); double mean_average_precision = 0; for (i = 0; i < classes; ++i) { double avg_precision = 0; int point; for (point = 0; point < 11; ++point) { double cur_recall = point * 0.1; double cur_precision = 0; for (rank = 0; rank < detections_count; ++rank) { if (pr[i][rank].recall >= cur_recall) { // > or >= if (pr[i][rank].precision > cur_precision) { cur_precision = pr[i][rank].precision; } } } //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision); avg_precision += cur_precision; } avg_precision = avg_precision / 11; printf("class_id = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100); mean_average_precision += avg_precision; } const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh); const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh)); const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall); printf(" for thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n", thresh_calc_avg_iou, cur_precision, cur_recall, f1_score); printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100); mean_average_precision = mean_average_precision / classes; printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100); for (i = 0; i < classes; ++i) { free(pr[i]); } free(pr); free(detections); free(truth_classes_count); fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); } #ifdef OPENCV void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show) { printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height); //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 }; float *rel_width_height_array = calloc(1000, sizeof(float)); list *options = read_data_cfg(datacfg); char *train_images = option_find_str(options, "train", "data/train.list"); list *plist = get_paths(train_images); int number_of_images = plist->size; char **paths = (char **)list_to_array(plist); int number_of_boxes = 0; printf(" read labels from %d images \n", number_of_images); int i, j; for (i = 0; i < number_of_images; ++i) { char *path = paths[i]; char labelpath[4096]; find_replace(path, "images", "labels", labelpath); find_replace(labelpath, "JPEGImages", "labels", labelpath); find_replace(labelpath, ".jpg", ".txt", labelpath); find_replace(labelpath, ".JPEG", ".txt", labelpath); find_replace(labelpath, ".png", ".txt", labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); //printf(" new path: %s \n", labelpath); for (j = 0; j < num_labels; ++j) { number_of_boxes++; rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float)); rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * final_width; rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * final_height; printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes); } } printf("\n all loaded. \n"); CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1); CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1); CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1); for (i = 0; i < number_of_boxes; ++i) { points->data.fl[i * 2] = rel_width_height_array[i * 2]; points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1]; //cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0)); //cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0)); } const int attemps = 10; double compactness; enum { KMEANS_RANDOM_CENTERS = 0, KMEANS_USE_INITIAL_LABELS = 1, KMEANS_PP_CENTERS = 2 }; printf("\n calculating k-means++ ..."); // Should be used: distance(box, centroid) = 1 - IoU(box, centroid) cvKMeans2(points, num_of_clusters, labels, cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10000, 0), attemps, 0, KMEANS_PP_CENTERS, centers, &compactness); //orig 2.0 anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 //float orig_anch[] = { 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 }; // worse than ours (even for 19x19 final size - for input size 608x608) //orig anchors = 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 //float orig_anch[] = { 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 }; // orig (IoU=59.90%) better than ours (59.75%) //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 }; // ours: anchors = 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 //float orig_anch[] = { 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 }; //for (i = 0; i < num_of_clusters * 2; ++i) centers->data.fl[i] = orig_anch[i]; //for (i = 0; i < number_of_boxes; ++i) // printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]); float avg_iou = 0; for (i = 0; i < number_of_boxes; ++i) { float box_w = points->data.fl[i * 2]; float box_h = points->data.fl[i * 2 + 1]; //int cluster_idx = labels->data.i[i]; int cluster_idx = 0; float min_dist = FLT_MAX; for (j = 0; j < num_of_clusters; ++j) { float anchor_w = centers->data.fl[j * 2]; float anchor_h = centers->data.fl[j * 2 + 1]; float w_diff = anchor_w - box_w; float h_diff = anchor_h - box_h; float distance = sqrt(w_diff*w_diff + h_diff*h_diff); if (distance < min_dist) min_dist = distance, cluster_idx = j; } float anchor_w = centers->data.fl[cluster_idx * 2]; float anchor_h = centers->data.fl[cluster_idx * 2 + 1]; float min_w = (box_w < anchor_w) ? box_w : anchor_w; float min_h = (box_h < anchor_h) ? box_h : anchor_h; float box_intersect = min_w*min_h; float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect; float iou = box_intersect / box_union; if (iou > 1 || iou < 0) { printf(" i = %d, box_w = %d, box_h = %d, anchor_w = %d, anchor_h = %d, iou = %f \n", i, box_w, box_h, anchor_w, anchor_h, iou); } else avg_iou += iou; } avg_iou = 100 * avg_iou / number_of_boxes; printf("\n avg IoU = %2.2f %% \n", avg_iou); char buff[1024]; FILE* fw = fopen("anchors.txt", "wb"); printf("\nSaving anchors to the file: anchors.txt \n"); printf("anchors = "); for (i = 0; i < num_of_clusters; ++i) { sprintf(buff, "%2.4f,%2.4f", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]); printf("%s, ", buff); fwrite(buff, sizeof(char), strlen(buff), fw); if (i + 1 < num_of_clusters) fwrite(", ", sizeof(char), 2, fw);; } printf("\n"); fclose(fw); if (show) { size_t img_size = 700; IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3); cvZero(img); for (j = 0; j < num_of_clusters; ++j) { CvPoint pt1, pt2; pt1.x = pt1.y = 0; pt2.x = centers->data.fl[j * 2] * img_size / final_width; pt2.y = centers->data.fl[j * 2 + 1] * img_size / final_height; cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0); } for (i = 0; i < number_of_boxes; ++i) { CvPoint pt; pt.x = points->data.fl[i * 2] * img_size / final_width; pt.y = points->data.fl[i * 2 + 1] * img_size / final_height; int cluster_idx = labels->data.i[i]; int red_id = (cluster_idx * (uint64_t)123 + 55) % 255; int green_id = (cluster_idx * (uint64_t)321 + 33) % 255; int blue_id = (cluster_idx * (uint64_t)11 + 99) % 255; cvCircle(img, pt, 1, CV_RGB(red_id, green_id, blue_id), CV_FILLED, 8, 0); //if(pt.x > img_size || pt.y > img_size) printf("\n pt.x = %d, pt.y = %d \n", pt.x, pt.y); } cvShowImage("clusters", img); cvWaitKey(0); cvReleaseImage(&img); cvDestroyAllWindows(); } free(rel_width_height_array); cvReleaseMat(&points); cvReleaseMat(¢ers); cvReleaseMat(&labels); } #else void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show) { printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n"); } #endif // OPENCV void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show) { list *options = read_data_cfg(datacfg); char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); image **alphabet = load_alphabet(); network net = parse_network_cfg_custom(cfgfile, 1); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); clock_t time; char buff[256]; char *input = buff; int j; float nms=.4; while(1){ if(filename){ strncpy(input, filename, 256); if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; } else { printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input,0,0); image sized = resize_image(im, net.w, net.h); layer l = net.layers[net.n-1]; box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); float *X = sized.data; time=clock(); network_predict(net, X); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, 0); if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms); draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); save_image(im, "predictions"); if (!dont_show) { show_image(im, "predictions"); } free_image(im); free_image(sized); free(boxes); free_ptrs((void **)probs, l.w*l.h*l.n); #ifdef OPENCV if (!dont_show) { cvWaitKey(0); cvDestroyAllWindows(); } #endif if (filename) break; } } void run_detector(int argc, char **argv) { int dont_show = find_arg(argc, argv, "-dont_show"); int show = find_arg(argc, argv, "-show"); int http_stream_port = find_int_arg(argc, argv, "-http_port", -1); char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); char *prefix = find_char_arg(argc, argv, "-prefix", 0); float thresh = find_float_arg(argc, argv, "-thresh", .24); int cam_index = find_int_arg(argc, argv, "-c", 0); int frame_skip = find_int_arg(argc, argv, "-s", 0); int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); int final_width = find_int_arg(argc, argv, "-final_width", 13); int final_heigh = find_int_arg(argc, argv, "-final_heigh", 13); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); int *gpus = 0; int gpu = 0; int ngpus = 0; if(gpu_list){ printf("%s\n", gpu_list); int len = strlen(gpu_list); ngpus = 1; int i; for(i = 0; i < len; ++i){ if (gpu_list[i] == ',') ++ngpus; } gpus = calloc(ngpus, sizeof(int)); for(i = 0; i < ngpus; ++i){ gpus[i] = atoi(gpu_list); gpu_list = strchr(gpu_list, ',')+1; } } else { gpu = gpu_index; gpus = &gpu; ngpus = 1; } int clear = find_arg(argc, argv, "-clear"); char *datacfg = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; if(weights) if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; char *filename = (argc > 6) ? argv[6]: 0; if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, dont_show); else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show); else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show); else if(0==strcmp(argv[2], "demo")) { list *options = read_data_cfg(datacfg); int classes = option_find_int(options, "classes", 20); char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); if(filename) if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, http_stream_port, dont_show); } }