#include "network.h" #include "utils.h" #include "parser.h" #include "option_list.h" #include "blas.h" #include "assert.h" #include "classifier.h" #include "dark_cuda.h" #ifdef WIN32 #include #include "gettimeofday.h" #else #include #endif float validate_classifier_single(char *datacfg, char *filename, char *weightfile, network *existing_net, int topk_custom); float *get_regression_values(char **labels, int n) { float* v = (float*)calloc(n, sizeof(float)); int i; for(i = 0; i < n; ++i){ char *p = strchr(labels[i], ' '); *p = 0; v[i] = atof(p+1); } return v; } void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int mjpeg_port, int calc_topk, int show_imgs) { int i; float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); printf("%d\n", ngpus); network* nets = (network*)calloc(ngpus, sizeof(network)); srand(time(0)); int seed = rand(); for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&nets[i], weightfile); } if(clear) *nets[i].seen = 0; nets[i].learning_rate *= ngpus; } srand(time(0)); network net = nets[0]; int imgs = net.batch * net.subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); list *options = read_data_cfg(datacfg); char *backup_directory = option_find_str(options, "backup", "/backup/"); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *train_list = option_find_str(options, "train", "data/train.list"); int classes = option_find_int(options, "classes", 2); int topk_data = option_find_int(options, "top", 5); char topk_buff[10]; sprintf(topk_buff, "top%d", topk_data); char **labels = get_labels(label_list); list *plist = get_paths(train_list); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int train_images_num = plist->size; clock_t time; load_args args = {0}; args.w = net.w; args.h = net.h; args.c = net.c; args.threads = 32; args.hierarchy = net.hierarchy; args.min = net.min_crop; args.max = net.max_crop; args.flip = net.flip; args.blur = net.blur; args.angle = net.angle; args.aspect = net.aspect; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; args.size = net.w > net.h ? net.w : net.h; args.label_smooth_eps = net.label_smooth_eps; args.mixup = net.mixup; if (dont_show && show_imgs) show_imgs = 2; args.show_imgs = show_imgs; args.paths = paths; args.classes = classes; args.n = imgs; args.m = train_images_num; args.labels = labels; args.type = CLASSIFICATION_DATA; #ifdef OPENCV //args.threads = 3; mat_cv* img = NULL; float max_img_loss = 10; int number_of_lines = 100; int img_size = 1000; img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size, dont_show); #endif //OPENCV data train; data buffer; pthread_t load_thread; args.d = &buffer; load_thread = load_data(args); int iter_save = get_current_batch(net); int iter_save_last = get_current_batch(net); int iter_topk = get_current_batch(net); float topk = 0; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if(avg_loss == -1 || isnan(avg_loss) || isinf(avg_loss)) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; i = get_current_batch(net); int calc_topk_for_each = iter_topk + 2 * train_images_num / (net.batch * net.subdivisions); // calculate TOPk for each 2 Epochs calc_topk_for_each = fmax(calc_topk_for_each, net.burn_in); calc_topk_for_each = fmax(calc_topk_for_each, 100); if (i % 10 == 0) { if (calc_topk) { fprintf(stderr, "\n (next TOP5 calculation at %d iterations) ", calc_topk_for_each); if (topk > 0) fprintf(stderr, " Last accuracy TOP5 = %2.2f %% \n", topk * 100); } if (net.cudnn_half) { if (i < net.burn_in * 3) fprintf(stderr, " Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in); else fprintf(stderr, " Tensor Cores are used.\n"); } } int draw_precision = 0; if (calc_topk && (i >= calc_topk_for_each || i == net.max_batches)) { iter_topk = i; topk = validate_classifier_single(datacfg, cfgfile, weightfile, &net, topk_data); // calc TOP5 printf("\n accuracy %s = %f \n", topk_buff, topk); draw_precision = 1; } printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/ train_images_num, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); #ifdef OPENCV draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches, topk, draw_precision, topk_buff, dont_show, mjpeg_port); #endif // OPENCV if (i >= (iter_save + 1000)) { iter_save = i; #ifdef GPU if (ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } if (i >= (iter_save_last + 100)) { iter_save_last = i; #ifdef GPU if (ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_last.weights", backup_directory, base); save_weights(net, buff); } free_data(train); } #ifdef GPU if (ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); #ifdef OPENCV release_mat(&img); destroy_all_windows_cv(); #endif pthread_join(load_thread, 0); free_data(buffer); //free_network(net); for (i = 0; i < ngpus; ++i) free_network(nets[i]); free(nets); //free_ptrs((void**)labels, classes); free(labels); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); free_list_contents_kvp(options); free_list(options); } /* void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear) { srand(time(0)); float avg_loss = -1; char *base = basecfg(cfgfile); printf("%s\n", base); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } if(clear) *net.seen = 0; int imgs = net.batch * net.subdivisions; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); list *options = read_data_cfg(datacfg); char *backup_directory = option_find_str(options, "backup", "/backup/"); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *train_list = option_find_str(options, "train", "data/train.list"); int classes = option_find_int(options, "classes", 2); char **labels = get_labels(label_list); list *plist = get_paths(train_list); char **paths = (char **)list_to_array(plist); printf("%d\n", plist->size); int N = plist->size; clock_t time; load_args args = {0}; args.w = net.w; args.h = net.h; args.threads = 8; args.min = net.min_crop; args.max = net.max_crop; args.flip = net.flip; args.angle = net.angle; args.aspect = net.aspect; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; args.size = net.w; args.hierarchy = net.hierarchy; args.paths = paths; args.classes = classes; args.n = imgs; args.m = N; args.labels = labels; args.type = CLASSIFICATION_DATA; data train; data buffer; pthread_t load_thread; args.d = &buffer; load_thread = load_data(args); int epoch = (*net.seen)/N; while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ time=clock(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); printf("Loaded: %lf seconds\n", sec(clock()-time)); time=clock(); #ifdef OPENCV if(0){ int u; for(u = 0; u < imgs; ++u){ image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); show_image(im, "loaded"); cvWaitKey(0); } } #endif float loss = train_network(net, train); free_data(train); if(avg_loss == -1) avg_loss = loss; avg_loss = avg_loss*.9 + loss*.1; printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); if(*net.seen/N > epoch){ epoch = *net.seen/N; char buff[256]; sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); save_weights(net, buff); } if(get_current_batch(net)%100 == 0){ char buff[256]; sprintf(buff, "%s/%s.backup",backup_directory,base); save_weights(net, buff); } } char buff[256]; sprintf(buff, "%s/%s.weights", backup_directory, base); save_weights(net, buff); free_network(net); free_ptrs((void**)labels, classes); free_ptrs((void**)paths, plist->size); free_list(plist); free(base); } */ void validate_classifier_crop(char *datacfg, char *filename, char *weightfile) { int i = 0; network net = parse_network_cfg(filename); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); list *options = read_data_cfg(datacfg); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *valid_list = option_find_str(options, "valid", "data/train.list"); int classes = option_find_int(options, "classes", 2); int topk = option_find_int(options, "top", 1); if (topk > classes) topk = classes; char **labels = get_labels(label_list); list *plist = get_paths(valid_list); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); clock_t time; float avg_acc = 0; float avg_topk = 0; int splits = m/1000; int num = (i+1)*m/splits - i*m/splits; data val, buffer; load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.classes = classes; args.n = num; args.m = 0; args.labels = labels; args.d = &buffer; args.type = OLD_CLASSIFICATION_DATA; pthread_t load_thread = load_data_in_thread(args); for(i = 1; i <= splits; ++i){ time=clock(); pthread_join(load_thread, 0); val = buffer; num = (i+1)*m/splits - i*m/splits; char **part = paths+(i*m/splits); if(i != splits){ args.paths = part; load_thread = load_data_in_thread(args); } printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); time=clock(); float *acc = network_accuracies(net, val, topk); avg_acc += acc[0]; avg_topk += acc[1]; printf("%d: top 1: %f, top %d: %f, %lf seconds, %d images\n", i, avg_acc/i, topk, avg_topk/i, sec(clock()-time), val.X.rows); free_data(val); } } void validate_classifier_10(char *datacfg, char *filename, char *weightfile) { int i, j; network net = parse_network_cfg(filename); set_batch_network(&net, 1); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); list *options = read_data_cfg(datacfg); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *valid_list = option_find_str(options, "valid", "data/train.list"); int classes = option_find_int(options, "classes", 2); int topk = option_find_int(options, "top", 1); if (topk > classes) topk = classes; char **labels = get_labels(label_list); list *plist = get_paths(valid_list); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); float avg_acc = 0; float avg_topk = 0; int* indexes = (int*)calloc(topk, sizeof(int)); for(i = 0; i < m; ++i){ int class_id = -1; char *path = paths[i]; for(j = 0; j < classes; ++j){ if(strstr(path, labels[j])){ class_id = j; break; } } int w = net.w; int h = net.h; int shift = 32; image im = load_image_color(paths[i], w+shift, h+shift); image images[10]; images[0] = crop_image(im, -shift, -shift, w, h); images[1] = crop_image(im, shift, -shift, w, h); images[2] = crop_image(im, 0, 0, w, h); images[3] = crop_image(im, -shift, shift, w, h); images[4] = crop_image(im, shift, shift, w, h); flip_image(im); images[5] = crop_image(im, -shift, -shift, w, h); images[6] = crop_image(im, shift, -shift, w, h); images[7] = crop_image(im, 0, 0, w, h); images[8] = crop_image(im, -shift, shift, w, h); images[9] = crop_image(im, shift, shift, w, h); float* pred = (float*)calloc(classes, sizeof(float)); for(j = 0; j < 10; ++j){ float *p = network_predict(net, images[j].data); if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1); axpy_cpu(classes, 1, p, 1, pred, 1); free_image(images[j]); } free_image(im); top_k(pred, classes, topk, indexes); free(pred); if(indexes[0] == class_id) avg_acc += 1; for(j = 0; j < topk; ++j){ if(indexes[j] == class_id) avg_topk += 1; } printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); } } void validate_classifier_full(char *datacfg, char *filename, char *weightfile) { int i, j; network net = parse_network_cfg(filename); set_batch_network(&net, 1); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); list *options = read_data_cfg(datacfg); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *valid_list = option_find_str(options, "valid", "data/train.list"); int classes = option_find_int(options, "classes", 2); int topk = option_find_int(options, "top", 1); if (topk > classes) topk = classes; char **labels = get_labels(label_list); list *plist = get_paths(valid_list); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); float avg_acc = 0; float avg_topk = 0; int* indexes = (int*)calloc(topk, sizeof(int)); int size = net.w; for(i = 0; i < m; ++i){ int class_id = -1; char *path = paths[i]; for(j = 0; j < classes; ++j){ if(strstr(path, labels[j])){ class_id = j; break; } } image im = load_image_color(paths[i], 0, 0); image resized = resize_min(im, size); resize_network(&net, resized.w, resized.h); //show_image(im, "orig"); //show_image(crop, "cropped"); //cvWaitKey(0); float *pred = network_predict(net, resized.data); if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1); free_image(im); free_image(resized); top_k(pred, classes, topk, indexes); if(indexes[0] == class_id) avg_acc += 1; for(j = 0; j < topk; ++j){ if(indexes[j] == class_id) avg_topk += 1; } printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); } } float validate_classifier_single(char *datacfg, char *filename, char *weightfile, network *existing_net, int topk_custom) { int i, j; network net; int old_batch = -1; if (existing_net) { net = *existing_net; // for validation during training old_batch = net.batch; set_batch_network(&net, 1); } else { net = parse_network_cfg_custom(filename, 1, 0); if (weightfile) { load_weights(&net, weightfile); } //set_batch_network(&net, 1); fuse_conv_batchnorm(net); calculate_binary_weights(net); } srand(time(0)); list *options = read_data_cfg(datacfg); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *leaf_list = option_find_str(options, "leaves", 0); if(leaf_list) change_leaves(net.hierarchy, leaf_list); char *valid_list = option_find_str(options, "valid", "data/train.list"); int classes = option_find_int(options, "classes", 2); int topk = option_find_int(options, "top", 1); if (topk_custom > 0) topk = topk_custom; // for validation during training if (topk > classes) topk = classes; printf(" TOP calculation...\n"); char **labels = get_labels(label_list); list *plist = get_paths(valid_list); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); float avg_acc = 0; float avg_topk = 0; int* indexes = (int*)calloc(topk, sizeof(int)); for(i = 0; i < m; ++i){ int class_id = -1; char *path = paths[i]; for(j = 0; j < classes; ++j){ if(strstr(path, labels[j])){ class_id = j; break; } } image im = load_image_color(paths[i], 0, 0); image resized = resize_min(im, net.w); image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h); //show_image(im, "orig"); //show_image(crop, "cropped"); //cvWaitKey(0); float *pred = network_predict(net, crop.data); if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1); if(resized.data != im.data) free_image(resized); free_image(im); free_image(crop); top_k(pred, classes, topk, indexes); if(indexes[0] == class_id) avg_acc += 1; for(j = 0; j < topk; ++j){ if(indexes[j] == class_id) avg_topk += 1; } if (existing_net) printf("\r"); else printf("\n"); printf("%d: top 1: %f, top %d: %f", i, avg_acc/(i+1), topk, avg_topk/(i+1)); } if (existing_net) { set_batch_network(&net, old_batch); } float topk_result = avg_topk / i; return topk_result; } void validate_classifier_multi(char *datacfg, char *filename, char *weightfile) { int i, j; network net = parse_network_cfg(filename); set_batch_network(&net, 1); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); list *options = read_data_cfg(datacfg); char *label_list = option_find_str(options, "labels", "data/labels.list"); char *valid_list = option_find_str(options, "valid", "data/train.list"); int classes = option_find_int(options, "classes", 2); int topk = option_find_int(options, "top", 1); if (topk > classes) topk = classes; char **labels = get_labels(label_list); list *plist = get_paths(valid_list); int scales[] = {224, 288, 320, 352, 384}; int nscales = sizeof(scales)/sizeof(scales[0]); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); float avg_acc = 0; float avg_topk = 0; int* indexes = (int*)calloc(topk, sizeof(int)); for(i = 0; i < m; ++i){ int class_id = -1; char *path = paths[i]; for(j = 0; j < classes; ++j){ if(strstr(path, labels[j])){ class_id = j; break; } } float* pred = (float*)calloc(classes, sizeof(float)); image im = load_image_color(paths[i], 0, 0); for(j = 0; j < nscales; ++j){ image r = resize_min(im, scales[j]); resize_network(&net, r.w, r.h); float *p = network_predict(net, r.data); if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1); axpy_cpu(classes, 1, p, 1, pred, 1); flip_image(r); p = network_predict(net, r.data); axpy_cpu(classes, 1, p, 1, pred, 1); if(r.data != im.data) free_image(r); } free_image(im); top_k(pred, classes, topk, indexes); free(pred); if(indexes[0] == class_id) avg_acc += 1; for(j = 0; j < topk; ++j){ if(indexes[j] == class_id) avg_topk += 1; } printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); } } void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int layer_num) { network net = parse_network_cfg_custom(cfgfile, 1, 0); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); list *options = read_data_cfg(datacfg); char *name_list = option_find_str(options, "names", 0); if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); int classes = option_find_int(options, "classes", 2); int top = option_find_int(options, "top", 1); if (top > classes) top = classes; int i = 0; char **names = get_labels(name_list); clock_t time; int* indexes = (int*)calloc(top, sizeof(int)); char buff[256]; char *input = buff; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image orig = load_image_color(input, 0, 0); image r = resize_min(orig, 256); image im = crop_image(r, (r.w - 224 - 1)/2 + 1, (r.h - 224 - 1)/2 + 1, 224, 224); float mean[] = {0.48263312050943, 0.45230225481413, 0.40099074308742}; float std[] = {0.22590347483426, 0.22120921437787, 0.22103996251583}; float var[3]; var[0] = std[0]*std[0]; var[1] = std[1]*std[1]; var[2] = std[2]*std[2]; normalize_cpu(im.data, mean, var, 1, 3, im.w*im.h); float *X = im.data; time=clock(); float *predictions = network_predict(net, X); layer l = net.layers[layer_num]; for(i = 0; i < l.c; ++i){ if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]); } #ifdef GPU cuda_pull_array(l.output_gpu, l.output, l.outputs); #endif for(i = 0; i < l.outputs; ++i){ printf("%f\n", l.output[i]); } /* printf("\n\nWeights\n"); for(i = 0; i < l.n*l.size*l.size*l.c; ++i){ printf("%f\n", l.filters[i]); } printf("\n\nBiases\n"); for(i = 0; i < l.n; ++i){ printf("%f\n", l.biases[i]); } */ top_predictions(net, top, indexes); printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); for(i = 0; i < top; ++i){ int index = indexes[i]; printf("%s: %f\n", names[index], predictions[index]); } free_image(im); if (filename) break; } } void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top) { network net = parse_network_cfg_custom(cfgfile, 1, 0); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); srand(2222222); fuse_conv_batchnorm(net); calculate_binary_weights(net); list *options = read_data_cfg(datacfg); char *name_list = option_find_str(options, "names", 0); if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); int classes = option_find_int(options, "classes", 2); printf(" classes = %d, output in cfg = %d \n", classes, net.layers[net.n - 1].c); if (top == 0) top = option_find_int(options, "top", 1); if (top > classes) top = classes; int i = 0; char **names = get_labels(name_list); clock_t time; int* indexes = (int*)calloc(top, sizeof(int)); char buff[256]; char *input = buff; //int size = net.w; while(1){ if(filename){ strncpy(input, filename, 256); }else{ printf("Enter Image Path: "); fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image_color(input, 0, 0); image resized = resize_min(im, net.w); image r = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h); //image r = resize_min(im, size); //resize_network(&net, r.w, r.h); printf("%d %d\n", r.w, r.h); float *X = r.data; double time = get_time_point(); float *predictions = network_predict(net, X); printf("%s: Predicted in %lf milli-seconds.\n", input, ((double)get_time_point() - time) / 1000); if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 0); top_k(predictions, net.outputs, top, indexes); for(i = 0; i < top; ++i){ int index = indexes[i]; if(net.hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net.hierarchy->parent[index] >= 0) ? names[net.hierarchy->parent[index]] : "Root"); else printf("%s: %f\n",names[index], predictions[index]); } if(r.data != im.data) free_image(r); free_image(im); free_image(resized); if (filename) break; } free(indexes); free_network(net); free_list_contents_kvp(options); free_list(options); } void label_classifier(char *datacfg, char *filename, char *weightfile) { int i; network net = parse_network_cfg(filename); set_batch_network(&net, 1); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); list *options = read_data_cfg(datacfg); char *label_list = option_find_str(options, "names", "data/labels.list"); char *test_list = option_find_str(options, "test", "data/train.list"); int classes = option_find_int(options, "classes", 2); char **labels = get_labels(label_list); list *plist = get_paths(test_list); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); for(i = 0; i < m; ++i){ image im = load_image_color(paths[i], 0, 0); image resized = resize_min(im, net.w); image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h); float *pred = network_predict(net, crop.data); if(resized.data != im.data) free_image(resized); free_image(im); free_image(crop); int ind = max_index(pred, classes); printf("%s\n", labels[ind]); } } void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer) { int curr = 0; network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } srand(time(0)); fuse_conv_batchnorm(net); calculate_binary_weights(net); list *options = read_data_cfg(datacfg); char *test_list = option_find_str(options, "test", "data/test.list"); int classes = option_find_int(options, "classes", 2); list *plist = get_paths(test_list); char **paths = (char **)list_to_array(plist); int m = plist->size; free_list(plist); clock_t time; data val, buffer; load_args args = {0}; args.w = net.w; args.h = net.h; args.paths = paths; args.classes = classes; args.n = net.batch; args.m = 0; args.labels = 0; args.d = &buffer; args.type = OLD_CLASSIFICATION_DATA; pthread_t load_thread = load_data_in_thread(args); for(curr = net.batch; curr < m; curr += net.batch){ time=clock(); pthread_join(load_thread, 0); val = buffer; if(curr < m){ args.paths = paths + curr; if (curr + net.batch > m) args.n = m - curr; load_thread = load_data_in_thread(args); } fprintf(stderr, "Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); time=clock(); matrix pred = network_predict_data(net, val); int i, j; if (target_layer >= 0){ //layer l = net.layers[target_layer]; } for(i = 0; i < pred.rows; ++i){ printf("%s", paths[curr-net.batch+i]); for(j = 0; j < pred.cols; ++j){ printf("\t%g", pred.vals[i][j]); } printf("\n"); } free_matrix(pred); fprintf(stderr, "%lf seconds, %d images, %d total\n", sec(clock()-time), val.X.rows, curr); free_data(val); } } void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) { #ifdef OPENCV float threat = 0; float roll = .2; printf("Classifier Demo\n"); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); list *options = read_data_cfg(datacfg); srand(2222222); cap_cv * cap; if (filename) { //cap = cvCaptureFromFile(filename); cap = get_capture_video_stream(filename); } else { //cap = cvCaptureFromCAM(cam_index); cap = get_capture_webcam(cam_index); } int classes = option_find_int(options, "classes", 2); int top = option_find_int(options, "top", 1); if (top > classes) top = classes; char *name_list = option_find_str(options, "names", 0); char **names = get_labels(name_list); int* indexes = (int*)calloc(top, sizeof(int)); if(!cap) error("Couldn't connect to webcam.\n"); create_window_cv("Threat", 0, 512, 512); float fps = 0; int i; int count = 0; while(1){ ++count; struct timeval tval_before, tval_after, tval_result; gettimeofday(&tval_before, NULL); //image in = get_image_from_stream(cap); image in = get_image_from_stream_cpp(cap); if(!in.data) break; image in_s = resize_image(in, net.w, net.h); image out = in; int x1 = out.w / 20; int y1 = out.h / 20; int x2 = 2*x1; int y2 = out.h - out.h/20; int border = .01*out.h; int h = y2 - y1 - 2*border; int w = x2 - x1 - 2*border; float *predictions = network_predict(net, in_s.data); float curr_threat = 0; if(1){ curr_threat = predictions[0] * 0 + predictions[1] * .6 + predictions[2]; } else { curr_threat = predictions[218] + predictions[539] + predictions[540] + predictions[368] + predictions[369] + predictions[370]; } threat = roll * curr_threat + (1-roll) * threat; draw_box_width(out, x2 + border, y1 + .02*h, x2 + .5 * w, y1 + .02*h + border, border, 0,0,0); if(threat > .97) { draw_box_width(out, x2 + .5 * w + border, y1 + .02*h - 2*border, x2 + .5 * w + 6*border, y1 + .02*h + 3*border, 3*border, 1,0,0); } draw_box_width(out, x2 + .5 * w + border, y1 + .02*h - 2*border, x2 + .5 * w + 6*border, y1 + .02*h + 3*border, .5*border, 0,0,0); draw_box_width(out, x2 + border, y1 + .42*h, x2 + .5 * w, y1 + .42*h + border, border, 0,0,0); if(threat > .57) { draw_box_width(out, x2 + .5 * w + border, y1 + .42*h - 2*border, x2 + .5 * w + 6*border, y1 + .42*h + 3*border, 3*border, 1,1,0); } draw_box_width(out, x2 + .5 * w + border, y1 + .42*h - 2*border, x2 + .5 * w + 6*border, y1 + .42*h + 3*border, .5*border, 0,0,0); draw_box_width(out, x1, y1, x2, y2, border, 0,0,0); for(i = 0; i < threat * h ; ++i){ float ratio = (float) i / h; float r = (ratio < .5) ? (2*(ratio)) : 1; float g = (ratio < .5) ? 1 : 1 - 2*(ratio - .5); draw_box_width(out, x1 + border, y2 - border - i, x2 - border, y2 - border - i, 1, r, g, 0); } top_predictions(net, top, indexes); char buff[256]; sprintf(buff, "tmp/threat_%06d", count); //save_image(out, buff); #ifndef _WIN32 printf("\033[2J"); printf("\033[1;1H"); #endif printf("\nFPS:%.0f\n",fps); for(i = 0; i < top; ++i){ int index = indexes[i]; printf("%.1f%%: %s\n", predictions[index]*100, names[index]); } if(1){ show_image(out, "Threat"); wait_key_cv(10); } free_image(in_s); free_image(in); gettimeofday(&tval_after, NULL); timersub(&tval_after, &tval_before, &tval_result); float curr = 1000000.f/((long int)tval_result.tv_usec); fps = .9*fps + .1*curr; } #endif } void gun_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) { #ifdef OPENCV_DISABLE int bad_cats[] = {218, 539, 540, 1213, 1501, 1742, 1911, 2415, 4348, 19223, 368, 369, 370, 1133, 1200, 1306, 2122, 2301, 2537, 2823, 3179, 3596, 3639, 4489, 5107, 5140, 5289, 6240, 6631, 6762, 7048, 7171, 7969, 7984, 7989, 8824, 8927, 9915, 10270, 10448, 13401, 15205, 18358, 18894, 18895, 19249, 19697}; printf("Classifier Demo\n"); network net = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); list *options = read_data_cfg(datacfg); srand(2222222); CvCapture * cap; if (filename) { //cap = cvCaptureFromFile(filename); cap = get_capture_video_stream(filename); } else { //cap = cvCaptureFromCAM(cam_index); cap = get_capture_webcam(cam_index); } int classes = option_find_int(options, "classes", 2); int top = option_find_int(options, "top", 1); if (top > classes) top = classes; char *name_list = option_find_str(options, "names", 0); char **names = get_labels(name_list); int* indexes = (int*)calloc(top, sizeof(int)); if(!cap) error("Couldn't connect to webcam.\n"); cvNamedWindow("Threat Detection", CV_WINDOW_NORMAL); cvResizeWindow("Threat Detection", 512, 512); float fps = 0; int i; while(1){ struct timeval tval_before, tval_after, tval_result; gettimeofday(&tval_before, NULL); //image in = get_image_from_stream(cap); image in = get_image_from_stream_cpp(cap); image in_s = resize_image(in, net.w, net.h); show_image(in, "Threat Detection"); float *predictions = network_predict(net, in_s.data); top_predictions(net, top, indexes); printf("\033[2J"); printf("\033[1;1H"); int threat = 0; for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){ int index = bad_cats[i]; if(predictions[index] > .01){ printf("Threat Detected!\n"); threat = 1; break; } } if(!threat) printf("Scanning...\n"); for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){ int index = bad_cats[i]; if(predictions[index] > .01){ printf("%s\n", names[index]); } } free_image(in_s); free_image(in); cvWaitKey(10); gettimeofday(&tval_after, NULL); timersub(&tval_after, &tval_before, &tval_result); float curr = 1000000.f/((long int)tval_result.tv_usec); fps = .9*fps + .1*curr; } #endif } void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) { #ifdef OPENCV printf("Classifier Demo\n"); network net = parse_network_cfg_custom(cfgfile, 1, 0); if(weightfile){ load_weights(&net, weightfile); } set_batch_network(&net, 1); list *options = read_data_cfg(datacfg); fuse_conv_batchnorm(net); calculate_binary_weights(net); srand(2222222); cap_cv * cap; if(filename){ cap = get_capture_video_stream(filename); }else{ cap = get_capture_webcam(cam_index); } int classes = option_find_int(options, "classes", 2); int top = option_find_int(options, "top", 1); if (top > classes) top = classes; char *name_list = option_find_str(options, "names", 0); char **names = get_labels(name_list); int* indexes = (int*)calloc(top, sizeof(int)); if(!cap) error("Couldn't connect to webcam.\n"); create_window_cv("Classifier", 0, 512, 512); float fps = 0; int i; while(1){ struct timeval tval_before, tval_after, tval_result; gettimeofday(&tval_before, NULL); //image in = get_image_from_stream(cap); image in = get_image_from_stream_cpp(cap); image in_s = resize_image(in, net.w, net.h); show_image(in, "Classifier"); double time = get_time_point(); float *predictions = network_predict(net, in_s.data); double frame_time_ms = (get_time_point() - time)/1000; if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 1); top_predictions(net, top, indexes); #ifndef _WIN32 printf("\033[2J"); printf("\033[1;1H"); #endif printf("\nFPS: %.2f \n", fps); for(i = 0; i < top; ++i){ int index = indexes[i]; printf("%.1f%%: %s\n", predictions[index]*100, names[index]); } free_image(in_s); free_image(in); wait_key_cv(10);// cvWaitKey(10); //gettimeofday(&tval_after, NULL); //timersub(&tval_after, &tval_before, &tval_result); //float curr = 1000000.f/((long int)tval_result.tv_usec); float curr = 1000.f / frame_time_ms; if (fps == 0) fps = curr; else fps = .9*fps + .1*curr; } #endif } void run_classifier(int argc, char **argv) { if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1); char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); int *gpus = 0; int gpu = 0; int ngpus = 0; if(gpu_list){ printf("%s\n", gpu_list); int len = strlen(gpu_list); ngpus = 1; int i; for(i = 0; i < len; ++i){ if (gpu_list[i] == ',') ++ngpus; } gpus = (int*)calloc(ngpus, sizeof(int)); for(i = 0; i < ngpus; ++i){ gpus[i] = atoi(gpu_list); gpu_list = strchr(gpu_list, ',')+1; } } else { gpu = gpu_index; gpus = &gpu; ngpus = 1; } int dont_show = find_arg(argc, argv, "-dont_show"); int show_imgs = find_arg(argc, argv, "-show_imgs"); int calc_topk = find_arg(argc, argv, "-topk"); int cam_index = find_int_arg(argc, argv, "-c", 0); int top = find_int_arg(argc, argv, "-t", 0); int clear = find_arg(argc, argv, "-clear"); char *data = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; char *filename = (argc > 6) ? argv[6]: 0; char *layer_s = (argc > 7) ? argv[7]: 0; int layer = layer_s ? atoi(layer_s) : -1; if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top); else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear, dont_show, mjpeg_port, calc_topk, show_imgs); else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename); else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename); else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights); else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights, NULL, -1); else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights); else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights); if (gpus && gpu_list && ngpus > 1) free(gpus); }