#include "image.h" #include int windows = 0; void subtract_image(image a, image b) { int i; for(i = 0; i < a.h*a.w*a.c; ++i) a.data[i] -= b.data[i]; } void normalize_image(image p) { double *min = calloc(p.c, sizeof(double)); double *max = calloc(p.c, sizeof(double)); int i,j; for(i = 0; i < p.c; ++i) min[i] = max[i] = p.data[i*p.h*p.w]; for(j = 0; j < p.c; ++j){ for(i = 0; i < p.h*p.w; ++i){ double v = p.data[i+j*p.h*p.w]; if(v < min[j]) min[j] = v; if(v > max[j]) max[j] = v; } } for(i = 0; i < p.c; ++i){ if(max[i] - min[i] < .00001){ min[i] = 0; max[i] = 1; } } for(j = 0; j < p.c; ++j){ for(i = 0; i < p.w*p.h; ++i){ p.data[i+j*p.h*p.w] = (p.data[i+j*p.h*p.w] - min[j])/(max[j]-min[j]); } } free(min); free(max); } double avg_image_layer(image m, int l) { int i; double sum = 0; for(i = 0; i < m.h*m.w; ++i){ sum += m.data[l*m.h*m.w + i]; } return sum/(m.h*m.w); } void threshold_image(image p, double t) { int i; for(i = 0; i < p.w*p.h*p.c; ++i){ if(p.data[i] < t) p.data[i] = 0; } } image copy_image(image p) { image copy = p; copy.data = calloc(p.h*p.w*p.c, sizeof(double)); memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(double)); return copy; } void show_image(image p, char *name) { int i,j,k; image copy = copy_image(p); normalize_image(copy); char buff[256]; sprintf(buff, "%s (%d)", name, windows); IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); int step = disp->widthStep; cvNamedWindow(buff, CV_WINDOW_AUTOSIZE); cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); ++windows; for(i = 0; i < p.h; ++i){ for(j = 0; j < p.w; ++j){ for(k= 0; k < p.c; ++k){ disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255); } } } if(disp->height < 100 || disp->width < 100){ IplImage *buffer = disp; disp = cvCreateImage(cvSize(100,100*p.h/p.w), buffer->depth, buffer->nChannels); cvResize(buffer, disp, CV_INTER_NN); cvReleaseImage(&buffer); } cvShowImage(buff, disp); cvReleaseImage(&disp); } void show_image_layers(image p, char *name) { int i; char buff[256]; for(i = 0; i < p.c; ++i){ sprintf(buff, "%s - Layer %d", name, i); image layer = get_image_layer(p, i); show_image(layer, buff); free_image(layer); } } image make_empty_image(int h, int w, int c) { image out; out.h = h; out.w = w; out.c = c; return out; } image make_image(int h, int w, int c) { image out = make_empty_image(h,w,c); out.data = calloc(h*w*c, sizeof(double)); return out; } image double_to_image(int h, int w, int c, double *data) { image out = make_empty_image(h,w,c); out.data = data; return out; } void zero_image(image m) { memset(m.data, 0, m.h*m.w*m.c*sizeof(double)); } void zero_channel(image m, int c) { memset(&(m.data[c*m.h*m.w]), 0, m.h*m.w*sizeof(double)); } void rotate_image(image m) { int i,j; for(j = 0; j < m.c; ++j){ for(i = 0; i < m.h*m.w/2; ++i){ double swap = m.data[j*m.h*m.w + i]; m.data[j*m.h*m.w + i] = m.data[j*m.h*m.w + (m.h*m.w-1 - i)]; m.data[j*m.h*m.w + (m.h*m.w-1 - i)] = swap; } } } image make_random_image(int h, int w, int c) { image out = make_image(h,w,c); int i; for(i = 0; i < h*w*c; ++i){ out.data[i] = (.5-(double)rand()/RAND_MAX); } return out; } image make_random_kernel(int size, int c) { int pad; if((pad=(size%2==0))) ++size; image out = make_random_image(size,size,c); int i,k; if(pad){ for(k = 0; k < out.c; ++k){ for(i = 0; i < size; ++i) { set_pixel(out, i, 0, k, 0); set_pixel(out, 0, i, k, 0); } } } return out; } image load_image(char *filename) { IplImage* src = 0; if( (src = cvLoadImage(filename,-1)) == 0 ) { printf("Cannot load file image %s\n", filename); exit(0); } unsigned char *data = (unsigned char *)src->imageData; int c = src->nChannels; int h = src->height; int w = src->width; int step = src->widthStep; image out = make_image(h,w,c); int i, j, k, count=0;; for(k= 0; k < c; ++k){ for(i = 0; i < h; ++i){ for(j = 0; j < w; ++j){ out.data[count++] = data[i*step + j*c + k]; } } } cvReleaseImage(&src); return out; } image get_image_layer(image m, int l) { image out = make_image(m.h, m.w, 1); int i; for(i = 0; i < m.h*m.w; ++i){ out.data[i] = m.data[i+l*m.h*m.w]; } return out; } double get_pixel(image m, int x, int y, int c) { assert(x < m.h && y < m.w && c < m.c); return m.data[c*m.h*m.w + x*m.w + y]; } double get_pixel_extend(image m, int x, int y, int c) { if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return 0; return get_pixel(m, x, y, c); } void set_pixel(image m, int x, int y, int c, double val) { assert(x < m.h && y < m.w && c < m.c); m.data[c*m.h*m.w + x*m.w + y] = val; } void set_pixel_extend(image m, int x, int y, int c, double val) { if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; set_pixel(m, x, y, c, val); } void add_pixel(image m, int x, int y, int c, double val) { assert(x < m.h && y < m.w && c < m.c); m.data[c*m.h*m.w + x*m.w + y] += val; } void add_pixel_extend(image m, int x, int y, int c, double val) { if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; add_pixel(m, x, y, c, val); } void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc) { int x,y,i,j; for(x = 0; x < m.h; x += stride){ for(y = 0; y < m.w; y += stride){ double sum = 0; for(i = 0; i < kernel.h; ++i){ for(j = 0; j < kernel.w; ++j){ sum += get_pixel(kernel, i, j, kc)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, mc); } } add_pixel(out, x/stride, y/stride, oc, sum); } } } double single_convolve(image m, image kernel, int x, int y) { double sum = 0; int i, j, k; for(i = 0; i < kernel.h; ++i){ for(j = 0; j < kernel.w; ++j){ for(k = 0; k < kernel.c; ++k){ sum += get_pixel(kernel, i, j, k)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k); } } } return sum; } void convolve(image m, image kernel, int stride, int channel, image out) { assert(m.c == kernel.c); int i; zero_channel(out, channel); for(i = 0; i < m.c; ++i){ two_d_convolve(m, i, kernel, i, stride, out, channel); } /* int j; for(i = 0; i < m.h; i += stride){ for(j = 0; j < m.w; j += stride){ double val = single_convolve(m, kernel, i, j); set_pixel(out, i/stride, j/stride, channel, val); } } */ } void upsample_image(image m, int stride, image out) { int i,j,k; zero_image(out); for(k = 0; k < m.c; ++k){ for(i = 0; i < m.h; ++i){ for(j = 0; j< m.w; ++j){ double val = get_pixel(m, i, j, k); set_pixel(out, i*stride, j*stride, k, val); } } } } void single_update(image m, image update, int x, int y, double error) { int i, j, k; for(i = 0; i < update.h; ++i){ for(j = 0; j < update.w; ++j){ for(k = 0; k < update.c; ++k){ double val = get_pixel_extend(m, x+i-update.h/2, y+j-update.w/2, k); add_pixel(update, i, j, k, val*error); } } } } void kernel_update(image m, image update, int stride, int channel, image out) { assert(m.c == update.c); zero_image(update); int i, j; for(i = 0; i < m.h; i += stride){ for(j = 0; j < m.w; j += stride){ double error = get_pixel(out, i/stride, j/stride, channel); single_update(m, update, i, j, error); } } for(i = 0; i < update.h*update.w*update.c; ++i){ update.data[i] /= (m.h/stride)*(m.w/stride); } } void single_back_convolve(image m, image kernel, int x, int y, double val) { int i, j, k; for(i = 0; i < kernel.h; ++i){ for(j = 0; j < kernel.w; ++j){ for(k = 0; k < kernel.c; ++k){ double pval = get_pixel(kernel, i, j, k) * val; add_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k, pval); } } } } void back_convolve(image m, image kernel, int stride, int channel, image out) { assert(m.c == kernel.c); int i, j; for(i = 0; i < m.h; i += stride){ for(j = 0; j < m.w; j += stride){ double val = get_pixel(out, i/stride, j/stride, channel); single_back_convolve(m, kernel, i, j, val); } } } void free_image(image m) { free(m.data); }