#include "cuda_runtime.h" #include "curand.h" #include "cublas_v2.h" #ifdef CUDNN #pragma comment(lib, "cudnn.lib") #endif extern "C" { #include "convolutional_layer.h" #include "batchnorm_layer.h" #include "gemm.h" #include "blas.h" #include "im2col.h" #include "col2im.h" #include "utils.h" #include "cuda.h" } extern "C" { double get_time_point(); void start_timer(); void stop_timer(); double get_time(); void stop_timer_and_show(); void stop_timer_and_show_name(char *name); void show_total_time(); } __global__ void binarize_kernel(float *x, int n, float *binary) { int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (i >= n) return; binary[i] = (x[i] >= 0) ? 1 : -1; } void binarize_gpu(float *x, int n, float *binary) { binarize_kernel<<>>(x, n, binary); check_error(cudaPeekAtLastError()); } __global__ void binarize_input_kernel(float *input, int n, int size, float *binary) { int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (s >= size) return; int i = 0; float mean = 0; for(i = 0; i < n; ++i){ mean += fabs(input[i*size + s]); } mean = mean / n; for(i = 0; i < n; ++i){ binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; } } void binarize_input_gpu(float *input, int n, int size, float *binary) { binarize_input_kernel<<>>(input, n, size, binary); check_error(cudaPeekAtLastError()); } __global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary) { int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; if (f >= n) return; int i = 0; float mean = 0; for (i = 0; i < size; ++i) { mean += fabs(weights[f*size + i]); } mean = mean / size; for (i = 0; i < size; ++i) { binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean; //binary[f*size + i] = weights[f*size + i]; } } void binarize_weights_gpu(float *weights, int n, int size, float *binary) { binarize_weights_kernel << > >(weights, n, size, binary); check_error(cudaPeekAtLastError()); } #define WARP_SIZE 32 __global__ void set_zero_kernel(float *src, int size) { int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < size) src[i] = 0; } __inline__ __device__ float warpAllReduceSum(float val) { for (int mask = WARP_SIZE / 2; mask > 0; mask /= 2) val += __shfl_xor(val, mask); return val; } // only if (size % 32 == 0) __global__ void reduce_kernel(float *weights, int n, int size, float *mean_arr_gpu) { int i = blockIdx.x * blockDim.x + threadIdx.x; int f = i / size; if (f >= n) return; float warp_mean = warpAllReduceSum(fabs(weights[i])); if(i % 32 == 0) atomicAdd(&mean_arr_gpu[f], warp_mean / size); } __global__ void binarize_weights_mean_kernel(float *weights, int n, int size, float *binary, float *mean_arr_gpu) { int i = blockIdx.x * blockDim.x + threadIdx.x; int f = i / size; if (f >= n) return; float mean = mean_arr_gpu[f]; binary[i] = (weights[i] > 0) ? mean : -mean; } void fast_binarize_weights_gpu(float *weights, int n, int size, float *binary, float *mean_arr_gpu) { if (size % 32 == 0) { size_t gridsize = n * size; const int num_blocks = gridsize / BLOCK + 1; set_zero_kernel << <(n/BLOCK + 1), BLOCK >> > (mean_arr_gpu, n); reduce_kernel << > > (weights, n, size, mean_arr_gpu); binarize_weights_mean_kernel << > > (weights, n, size, binary, mean_arr_gpu); check_error(cudaPeekAtLastError()); } else { binarize_weights_gpu(weights, n, size, binary); } } __global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < size) output_f16[idx] = __float2half(input_f32[idx]); //if (idx < size) output_f16[idx] = __float2half_rn(input_f32[idx]); // can't be compiled on Linux without casting // __float2half_ru, __float2half_rd, __float2half_rz, __float2half_rn //if (idx < size) *((unsigned short *)output_f16 + idx) = __float2half(input_f32[idx]); } void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16) { cuda_f32_to_f16 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> (input_f32, size, (half *)output_f16); } __global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < size) output_f32[idx] = __half2float(input_f16[idx]); //if (idx < size) output_f32[idx] = __half2float(*((unsigned short *)input_f16 + idx)); } void cuda_convert_f16_to_f32(float* input_f16, size_t size, float *output_f32) { cuda_f16_to_f32 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> ((half *)input_f16, size, output_f32); } half *cuda_make_f16_from_f32_array(float *src, size_t n) { half *dst16; size_t size = sizeof(half)*n; check_error(cudaMalloc((void **)&dst16, size)); if (src) { cuda_convert_f32_to_f16(src, n, (float *)dst16); } if (!dst16) error("Cuda malloc failed\n"); return dst16; } void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) { //fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); if(l.binary){ binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu); swap_binary(&l); } if(l.xnor){ if (!l.align_bit_weights_gpu || state.train) { //binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu); fast_binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu, l.mean_arr_gpu); } //swap_binary(&l); //binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu); //state.input = l.binary_input_gpu; //cudaDeviceSynchronize(); if (l.align_bit_weights_gpu && !state.train && l.c >= 256 && l.size > 1) { //return; cudaError_t status = cudaSuccess; int input_size = l.c*l.h*l.w*l.batch; int m = l.n; int k = l.size*l.size*l.c; int n = l.out_w*l.out_h; float * a = l.weights_gpu; int ldb_align = l.lda_align; size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; size_t t_intput_size = new_ldb * n; size_t t_bit_input_size = t_intput_size / 8;// +1; //if(0) { //cudaDeviceSynchronize(); int i = 0; // if (l.stride == 1 && l.c >= 256 && l.size > 1) if (l.stride == 1 && l.c >= 1024 && l.size > 1 && 0)// && l.w >= 13) // disabled { // stride=1 only //start_timer(); im2col_align_bin_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align); //cudaDeviceSynchronize(); //stop_timer_and_show_name("im2col_align_bin_ongpu"); } else { //start_timer(); im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.align_workspace_gpu, l.bit_align); //cudaDeviceSynchronize(); //stop_timer_and_show_name("im2col_align_ongpu"); //getchar(); // should be optimized //start_timer(); float_to_bit_gpu(l.align_workspace_gpu, (unsigned char *)state.workspace, l.align_workspace_size); //cudaDeviceSynchronize(); //stop_timer_and_show_name("float_to_bit_gpu"); } //start_timer(); transpose_bin_gpu((unsigned char *)state.workspace, (unsigned char *)l.transposed_align_workspace_gpu, k, n, l.bit_align, new_ldb, 8); //cudaDeviceSynchronize(); //stop_timer_and_show_name("transpose_bin_gpu"); // should be optimized //if(0) {//if (k > 1000) { // sequentially input-shared - BAD // gemm_nn_custom_bin_mean_transposed_sequentially_gpu(m, n, k, // (unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu); //} //else { // coalescing & weights-shared-memory - GOOD //start_timer(); gemm_nn_custom_bin_mean_transposed_gpu(m, n, k, (unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu); //cudaDeviceSynchronize(); //stop_timer_and_show_name("gemm_nn_custom_bin_mean_transposed_gpu"); //} //cudaDeviceSynchronize(); //check_error(status); //getchar(); } /* { float_to_bit_gpu(state.input, (unsigned char *)l.align_workspace_gpu, input_size); convolve_bin_gpu(l.align_workspace_gpu, (float *)l.align_bit_weights_gpu, l.output_gpu, l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr_gpu); //convolve_gpu(state.input, l.weights_gpu, l.output_gpu, l.w, l.h, l.c, l.n, l.size, l.pad); //cudaDeviceSynchronize(); //check_error(status); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } */ //add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); if(l.activation != LINEAR) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); //if (l.binary || l.xnor) swap_binary(&l); //cudaDeviceSynchronize(); return; } } if (l.xnor) { swap_binary(&l); binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu); state.input = l.binary_input_gpu; } //fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); #ifdef CUDNN float one = 1; // alpha[0], beta[0] is float for HALF and FLOAT float alpha = 1, beta = 0; //#ifdef CUDNN_HALF //if (state.use_mixed_precision) { int iteration_num = (*state.net.seen) / (state.net.batch*state.net.subdivisions); if(state.index != 0 && state.net.cudnn_half && !l.xnor && (!state.train || iteration_num > state.net.burn_in)) { //printf("\n CUDNN_HALF!!! state.index = %d \n", state.index); // Note: For improved performance it is advised to use beta[0] = 0.0. // For Tensor Core: cudnnSetConvolutionMathType() where cudnnMathType_t mathType = CUDNN_TENSOR_OP_MATH; // 1. or CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM and use CUDNN_DATA_HALF // 2. or CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops const size_t input16_size = l.batch*l.c*l.w*l.h; const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w; if (*state.net.max_input16_size < input16_size) { //printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size); *state.net.max_input16_size = input16_size; if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); } float *input16 = *state.net.input16_gpu; if (*state.net.max_output16_size < output16_size) { *state.net.max_output16_size = output16_size; if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); } float *output16 = *state.net.output16_gpu; cuda_convert_f32_to_f16(state.input, input16_size, input16); //fill_ongpu(output16_size / 2, 0, (float *)output16, 1); cudnnConvolutionForward(cudnn_handle(), &alpha, l.srcTensorDesc16, input16, l.weightDesc16, l.weights_gpu16, l.convDesc, l.fw_algo16, state.workspace, l.workspace_size, &beta, l.dstTensorDesc16, output16); if (l.batch_normalize) { if (state.train) // Training { copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1); //cudaMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), cudaMemcpyDefault, get_cuda_stream()); float one = 1; float zero = 0; // Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth // compared to FP32, it’s just that the statistics and value adjustment should be done in FP32. cudnnBatchNormalizationForwardTraining(cudnn_handle(), CUDNN_BATCHNORM_SPATIAL, &one, &zero, l.normDstTensorDescF16, l.x_gpu, // input l.normDstTensorDescF16, output16, // output l.normTensorDesc, l.scales_gpu, l.biases_gpu, .01, l.rolling_mean_gpu, // output (should be FP32) l.rolling_variance_gpu, // output (should be FP32) .00001, l.mean_gpu, // output (should be FP32) l.variance_gpu); // output (should be FP32) cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); //forward_batchnorm_layer_gpu(l, state); } else // Detection { cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); } } else // BIAS only { cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } } else { //#else cudnnConvolutionForward(cudnn_handle(), &alpha, //&one, l.srcTensorDesc, state.input, l.weightDesc, l.weights_gpu, l.convDesc, l.fw_algo, state.workspace, l.workspace_size, &beta, //&one, l.dstTensorDesc, l.output_gpu); //cudaDeviceSynchronize(); if (l.batch_normalize) { forward_batchnorm_layer_gpu(l, state); } else { add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } //#endif // CUDNN_HALF } #else fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); int i; int m = l.n; int k = l.size*l.size*l.c; int n = l.out_w*l.out_h; for(i = 0; i < l.batch; ++i){ float *im = state.input + i*l.c*l.h*l.w; float * a = l.weights_gpu; float * b = state.workspace; float * c = l.output_gpu; if (l.size == 1) { b = im; } else { im2col_ongpu(im, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); } gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n); } if (l.batch_normalize) { forward_batchnorm_layer_gpu(l, state); } else { add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); } #endif //#ifndef CUDNN_HALF //#endif // no CUDNN_HALF if (l.activation != LINEAR) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); //if(l.dot > 0) dot_error_gpu(l); if(l.binary || l.xnor) swap_binary(&l); //cudaDeviceSynchronize(); // for correct profiling of performance } void backward_convolutional_layer_gpu(convolutional_layer l, network_state state) { gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); //#ifndef CUDNN_HALF //if(l.batch_normalize){ // backward_batchnorm_layer_gpu(l, state); //} else { // //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); //} //#endif // no CUDNN_HALF float *original_input = state.input; if(l.xnor) state.input = l.binary_input_gpu; #ifdef CUDNN float one = 1; float alpha = 1, beta = 0; //#ifdef CUDNN_HALF int iteration_num = (*state.net.seen) / (state.net.batch*state.net.subdivisions); if (state.index != 0 && state.net.cudnn_half && !l.xnor && (!state.train || iteration_num > state.net.burn_in)) { const size_t input16_size = l.batch*l.c*l.w*l.h; const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h; if (*state.net.max_input16_size < input16_size) { *state.net.max_input16_size = input16_size; if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); } float *input16 = *state.net.input16_gpu; if (*state.net.max_output16_size < delta16_size) { *state.net.max_output16_size = delta16_size; if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); } float *delta16 = *state.net.output16_gpu; cuda_convert_f32_to_f16(state.input, input16_size, input16); cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16); if (l.batch_normalize) { //if (!state.train) { // l.mean_gpu = l.rolling_mean_gpu; // l.variance_gpu = l.rolling_variance_gpu; //} float one = 1; float zero = 0; cudnnBatchNormalizationBackward(cudnn_handle(), CUDNN_BATCHNORM_SPATIAL, &one, &zero, &one, &one, l.normDstTensorDescF16, l.x_gpu, // input l.normDstTensorDescF16, delta16, // input l.normDstTensorDescF16, l.x_norm_gpu, // output l.normTensorDesc, l.scales_gpu, // output (should be FP32) l.scale_updates_gpu, // output (should be FP32) l.bias_updates_gpu, // output (should be FP32) .00001, l.mean_gpu, // input (should be FP32) l.variance_gpu); // input (should be FP32) copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1); //cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream()); } else { //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); } // convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16 // get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16) // calculate conv weight updates // Already: l.weight_updates_gpu = (l.weight_updates_gpu - l.weight*decay*batch*subdivision)*momentum // so we should copy f32 to f16, or compute: f16=(w_up - w*d*b*s)*m cuda_convert_f32_to_f16(l.weight_updates_gpu, l.c*l.n*l.size*l.size, l.weight_updates_gpu16); cudnnConvolutionBackwardFilter(cudnn_handle(), &one, l.srcTensorDesc16, input16, //state.input, l.ddstTensorDesc16, delta16, //l.delta_gpu, l.convDesc, l.bf_algo16, state.workspace, l.workspace_size, &one, l.dweightDesc, l.weight_updates_gpu16); // l.weight_updates_gpu); cuda_convert_f16_to_f32(l.weight_updates_gpu16, l.c*l.n*l.size*l.size, l.weight_updates_gpu); if (state.delta) { if (l.binary || l.xnor) swap_binary(&l); // http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData // calculate delta for the next layer // convert input: l.weights_gpu (w), l.delta_gpu (dy) from fp32 to fp16 // get output: state.delta (dx) and convert it to fp32 (ONLY if it is fp16) cudnnConvolutionBackwardData(cudnn_handle(), &alpha, l.weightDesc16, l.weights_gpu16, //l.weights_gpu, l.ddstTensorDesc16, delta16, //l.delta_gpu, l.convDesc, l.bd_algo16, state.workspace, l.workspace_size, &beta, l.dsrcTensorDesc16, input16); // state.delta); cuda_convert_f16_to_f32(input16, input16_size, state.delta); if (l.binary || l.xnor) swap_binary(&l); if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); } } else { //#else // CUDNN_HALF if(l.batch_normalize){ backward_batchnorm_layer_gpu(l, state); } // calculate conv weight updates // if used: beta=1 then loss decreases faster cudnnConvolutionBackwardFilter(cudnn_handle(), &one, l.srcTensorDesc, state.input, l.ddstTensorDesc, l.delta_gpu, l.convDesc, l.bf_algo, state.workspace, l.workspace_size, &one, l.dweightDesc, l.weight_updates_gpu); if (state.delta) { if (l.binary || l.xnor) swap_binary(&l); // http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData // calculate delta for the next layer cudnnConvolutionBackwardData(cudnn_handle(), &one, l.weightDesc, l.weights_gpu, l.ddstTensorDesc, l.delta_gpu, l.convDesc, l.bd_algo, state.workspace, l.workspace_size, &one, l.dsrcTensorDesc, state.delta); if (l.binary || l.xnor) swap_binary(&l); if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); } } //#endif // CUDNN_HALF #else // CUDNN if (l.batch_normalize) { backward_batchnorm_layer_gpu(l, state); } int m = l.n; int n = l.size*l.size*l.c; int k = l.out_w*l.out_h; int i; for(i = 0; i < l.batch; ++i){ float * a = l.delta_gpu; float * b = state.workspace; float * c = l.weight_updates_gpu; im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n); if(state.delta){ if(l.binary || l.xnor) swap_binary(&l); float * a = l.weights_gpu; float * b = l.delta_gpu; float * c = state.workspace; gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); col2im_ongpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w); if(l.binary || l.xnor) { swap_binary(&l); } if(l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w); } } #endif } void pull_convolutional_layer(convolutional_layer layer) { cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); cuda_pull_array(layer.biases_gpu, layer.biases, layer.n); cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); if (layer.batch_normalize){ cuda_pull_array(layer.scales_gpu, layer.scales, layer.n); cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n); cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n); } if (layer.adam){ cuda_pull_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size); cuda_pull_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size); } } void push_convolutional_layer(convolutional_layer layer) { cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); #ifdef CUDNN_HALF cuda_convert_f32_to_f16(layer.weights_gpu, layer.c*layer.n*layer.size*layer.size, layer.weights_gpu16); #endif cuda_push_array(layer.biases_gpu, layer.biases, layer.n); cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); if (layer.batch_normalize){ cuda_push_array(layer.scales_gpu, layer.scales, layer.n); cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n); cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n); } if (layer.adam){ cuda_push_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size); cuda_push_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size); } } void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) { int size = layer.size*layer.size*layer.c*layer.n; axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); if(layer.scales_gpu){ axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1); scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1); } if(layer.adam){ scal_ongpu(size, layer.B1, layer.m_gpu, 1); scal_ongpu(size, layer.B2, layer.v_gpu, 1); axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); axpy_ongpu(size, -(1-layer.B1), layer.weight_updates_gpu, 1, layer.m_gpu, 1); mul_ongpu(size, layer.weight_updates_gpu, 1, layer.weight_updates_gpu, 1); axpy_ongpu(size, (1-layer.B2), layer.weight_updates_gpu, 1, layer.v_gpu, 1); adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate/batch, layer.eps, layer.t+1); fill_ongpu(size, 0, layer.weight_updates_gpu, 1); }else{ axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); // wu = wu - w*decay*batch axpy_ongpu(size, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); // w = w + wu*lr/batch scal_ongpu(size, momentum, layer.weight_updates_gpu, 1); // wu = wu*momentum // wu = (wu - w*decay*batch)*momentum // w = w + (wu - w*decay*batch)*lr/batch = w + wu*lr/batch - w*decay*lr = w*(1-decay*lr) + wu*lr/batch //wu_prev = (wu_old - w_old*decay*batch)*momentum //weights_update = weights_update_new + (weights_update_old - weights_old*decay*batch)*momentum - weights_new*decay*batch = // = weights_update_new + weights_update_old*momentum - weights_old*decay*batch*momentum - weights_new*decay*batch // = weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch //------------- RESULT -------------- // weights_update = weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch //----------------------------------- // weights_newest = weights_new + (weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch)*lr/batch // = weights_new + weights_update_new*lr/batch + weights_update_old*momentum*lr/batch - weights_old*momentum*decay*batch*lr/batch - weights_new*decay*batch*lr/batch // = weights_new + weights_update_new*lr/batch + weights_update_old*momentum*lr/batch - weights_old*momentum*decay*lr - weights_new*decay*lr // = weights_new*(1 - decay*lr) - weights_old*momentum*decay*lr + (weights_update_new + weights_update_old*momentum)*lr/batch //------------- RESULT -------------- // weights_newest = weights_new*(1 - decay*lr) - weights_old*momentum*(decay*lr) + (weights_update_new + weights_update_old*momentum)*lr/batch = // = weights_new - (weights_new + weights_old*momentum)*decay*lr + (weights_update_new + weights_update_old*momentum)*lr / batch //----------------------------------- } }