#include #include #include #include "col2im.h" #include "dark_cuda.h" // src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu // You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE __global__ void col2im_gpu_kernel(const int n, const float* data_col, const int height, const int width, const int ksize, const int pad, const int stride, const int height_col, const int width_col, float *data_im) { int index = blockIdx.x*blockDim.x+threadIdx.x; for(; index < n; index += blockDim.x*gridDim.x){ float val = 0; int w = index % width + pad; int h = (index / width) % height + pad; int c = index / (width * height); // compute the start and end of the output int w_col_start = (w < ksize) ? 0 : (w - ksize) / stride + 1; int w_col_end = min(w / stride + 1, width_col); int h_col_start = (h < ksize) ? 0 : (h - ksize) / stride + 1; int h_col_end = min(h / stride + 1, height_col); // equivalent implementation int offset = (c * ksize * ksize + h * ksize + w) * height_col * width_col; int coeff_h_col = (1 - stride * ksize * height_col) * width_col; int coeff_w_col = (1 - stride * height_col * width_col); for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col]; } } data_im[index] += val; } } void col2im_ongpu(float *data_col, int channels, int height, int width, int ksize, int stride, int pad, float *data_im){ // We are going to launch channels * height_col * width_col kernels, each // kernel responsible for copying a single-channel grid. int height_col = (height + 2 * pad - ksize) / stride + 1; int width_col = (width + 2 * pad - ksize) / stride + 1; int num_kernels = channels * height * width; col2im_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK, BLOCK, 0, get_cuda_stream() >>>( num_kernels, data_col, height, width, ksize, pad, stride, height_col, width_col, data_im); CHECK_CUDA(cudaPeekAtLastError()); } // ----------------------------------------- // CUDA: use 512 threads per block const int CAFFE_CUDA_NUM_THREADS = 512; // CUDA: number of blocks for threads. inline int CAFFE_GET_BLOCKS(const int N) { return (N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS; } // CUDA: grid stride looping #define CUDA_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ i < (n); \ i += blockDim.x * gridDim.x) // https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu __global__ void col2im_gpu_kernel_ext(const int n, const float* data_col, const int height, const int width, const int channels, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, const int height_col, const int width_col, float* data_im) { CUDA_KERNEL_LOOP(index, n) { float val = 0; const int w_im = index % width + pad_w; const int h_im = (index / width) % height + pad_h; const int c_im = index / (width * height); int kernel_extent_w = (kernel_w - 1) * dilation_w + 1; int kernel_extent_h = (kernel_h - 1) * dilation_h + 1; // compute the start and end of the output const int w_col_start = (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1; const int w_col_end = min(w_im / stride_w + 1, width_col); const int h_col_start = (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1; const int h_col_end = min(h_im / stride_h + 1, height_col); // TODO: use LCM of stride and dilation to avoid unnecessary loops for (int h_col = h_col_start; h_col < h_col_end; h_col += 1) { for (int w_col = w_col_start; w_col < w_col_end; w_col += 1) { int h_k = (h_im - h_col * stride_h); int w_k = (w_im - w_col * stride_w); if (h_k % dilation_h == 0 && w_k % dilation_w == 0) { h_k /= dilation_h; w_k /= dilation_w; int data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) * height_col + h_col) * width_col + w_col; val += data_col[data_col_index]; } } } data_im[index] = val; } } void col2im_gpu_ext(const float* data_col, const int channels, const int height, const int width, const int kernel_h, const int kernel_w, const int pad_h, const int pad_w, const int stride_h, const int stride_w, const int dilation_h, const int dilation_w, float* data_im) { int height_col = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1; int width_col = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1; int num_kernels = channels * height * width; // To avoid involving atomic operations, we will launch one kernel per // bottom dimension, and then in the kernel add up the top dimensions. // NOLINT_NEXT_LINE(whitespace/operators) col2im_gpu_kernel_ext<< > >( num_kernels, data_col, height, width, channels, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, height_col, width_col, data_im); CHECK_CUDA(cudaPeekAtLastError()); }