#include "scale_channels_layer.h" #include "utils.h" #include "dark_cuda.h" #include "blas.h" #include #include layer make_scale_channels_layer(int batch, int index, int w, int h, int c, int w2, int h2, int c2, int scale_wh) { fprintf(stderr,"scale Layer: %d\n", index); layer l = { (LAYER_TYPE)0 }; l.type = SCALE_CHANNELS; l.batch = batch; l.scale_wh = scale_wh; l.w = w; l.h = h; l.c = c; if (!l.scale_wh) assert(w == 1 && h == 1); else assert(c == 1); l.out_w = w2; l.out_h = h2; l.out_c = c2; if (!l.scale_wh) assert(l.out_c == l.c); else assert(l.out_w == l.w && l.out_h == l.h); l.outputs = l.out_w*l.out_h*l.out_c; l.inputs = l.outputs; l.index = index; l.delta = (float*)xcalloc(l.outputs * batch, sizeof(float)); l.output = (float*)xcalloc(l.outputs * batch, sizeof(float)); l.forward = forward_scale_channels_layer; l.backward = backward_scale_channels_layer; #ifdef GPU l.forward_gpu = forward_scale_channels_layer_gpu; l.backward_gpu = backward_scale_channels_layer_gpu; l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch); l.output_gpu = cuda_make_array(l.output, l.outputs*batch); #endif return l; } void resize_scale_channels_layer(layer *l, network *net) { layer first = net->layers[l->index]; l->out_w = first.out_w; l->out_h = first.out_h; l->outputs = l->out_w*l->out_h*l->out_c; l->inputs = l->outputs; l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float)); l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float)); #ifdef GPU cuda_free(l->output_gpu); cuda_free(l->delta_gpu); l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); #endif } void forward_scale_channels_layer(const layer l, network_state state) { int size = l.batch * l.out_c * l.out_w * l.out_h; int channel_size = l.out_w * l.out_h; int batch_size = l.out_c * l.out_w * l.out_h; float *from_output = state.net.layers[l.index].output; if (l.scale_wh) { int i; #pragma omp parallel for for (i = 0; i < size; ++i) { int input_index = i % channel_size + (i / batch_size)*channel_size; l.output[i] = state.input[input_index] * from_output[i]; } } else { int i; #pragma omp parallel for for (i = 0; i < size; ++i) { l.output[i] = state.input[i / channel_size] * from_output[i]; } } activate_array(l.output, l.outputs*l.batch, l.activation); } void backward_scale_channels_layer(const layer l, network_state state) { gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); //axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1); //scale_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta); int size = l.batch * l.out_c * l.out_w * l.out_h; int channel_size = l.out_w * l.out_h; int batch_size = l.out_c * l.out_w * l.out_h; float *from_output = state.net.layers[l.index].output; float *from_delta = state.net.layers[l.index].delta; if (l.scale_wh) { int i; #pragma omp parallel for for (i = 0; i < size; ++i) { int input_index = i % channel_size + (i / batch_size)*channel_size; state.delta[input_index] += l.delta[i] * from_output[i];// / l.out_c; // l.delta * from (should be divided by l.out_c?) from_delta[i] += state.input[input_index] * l.delta[i]; // input * l.delta } } else { int i; #pragma omp parallel for for (i = 0; i < size; ++i) { state.delta[i / channel_size] += l.delta[i] * from_output[i];// / channel_size; // l.delta * from (should be divided by channel_size?) from_delta[i] += state.input[i / channel_size] * l.delta[i]; // input * l.delta } } } #ifdef GPU void forward_scale_channels_layer_gpu(const layer l, network_state state) { int size = l.batch * l.out_c * l.out_w * l.out_h; int channel_size = l.out_w * l.out_h; int batch_size = l.out_c * l.out_w * l.out_h; scale_channels_gpu(state.net.layers[l.index].output_gpu, size, channel_size, batch_size, l.scale_wh, state.input, l.output_gpu); activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); } void backward_scale_channels_layer_gpu(const layer l, network_state state) { gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); int size = l.batch * l.out_c * l.out_w * l.out_h; int channel_size = l.out_w * l.out_h; int batch_size = l.out_c * l.out_w * l.out_h; float *from_output = state.net.layers[l.index].output_gpu; float *from_delta = state.net.layers[l.index].delta_gpu; backward_scale_channels_gpu(l.delta_gpu, size, channel_size, batch_size, l.scale_wh, state.input, from_delta, from_output, state.delta); } #endif