mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
352 lines
11 KiB
352 lines
11 KiB
#include <stdio.h> |
|
|
|
#include "network.h" |
|
#include "detection_layer.h" |
|
#include "cost_layer.h" |
|
#include "utils.h" |
|
#include "parser.h" |
|
#include "box.h" |
|
|
|
void train_compare(char *cfgfile, char *weightfile) |
|
{ |
|
srand(time(0)); |
|
float avg_loss = -1; |
|
char *base = basecfg(cfgfile); |
|
char* backup_directory = "backup/"; |
|
printf("%s\n", base); |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
int imgs = 1024; |
|
list *plist = get_paths("data/compare.train.list"); |
|
char **paths = (char **)list_to_array(plist); |
|
int N = plist->size; |
|
printf("%d\n", N); |
|
clock_t time; |
|
pthread_t load_thread; |
|
data train; |
|
data buffer; |
|
|
|
load_args args = {0}; |
|
args.w = net.w; |
|
args.h = net.h; |
|
args.paths = paths; |
|
args.classes = 20; |
|
args.n = imgs; |
|
args.m = N; |
|
args.d = &buffer; |
|
args.type = COMPARE_DATA; |
|
|
|
load_thread = load_data_in_thread(args); |
|
int epoch = *net.seen/N; |
|
int i = 0; |
|
while(1){ |
|
++i; |
|
time=clock(); |
|
pthread_join(load_thread, 0); |
|
train = buffer; |
|
|
|
load_thread = load_data_in_thread(args); |
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
time=clock(); |
|
float loss = train_network(net, train); |
|
if(avg_loss == -1) avg_loss = loss; |
|
avg_loss = avg_loss*.9 + loss*.1; |
|
printf("%.3f: %f, %f avg, %lf seconds, %ld images\n", (float)*net.seen/N, loss, avg_loss, sec(clock()-time), *net.seen); |
|
free_data(train); |
|
if(i%100 == 0){ |
|
char buff[256]; |
|
sprintf(buff, "%s/%s_%d_minor_%d.weights",backup_directory,base, epoch, i); |
|
save_weights(net, buff); |
|
} |
|
if(*net.seen/N > epoch){ |
|
epoch = *net.seen/N; |
|
i = 0; |
|
char buff[256]; |
|
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
|
save_weights(net, buff); |
|
if(epoch%22 == 0) net.learning_rate *= .1; |
|
} |
|
} |
|
pthread_join(load_thread, 0); |
|
free_data(buffer); |
|
free_network(net); |
|
free_ptrs((void**)paths, plist->size); |
|
free_list(plist); |
|
free(base); |
|
} |
|
|
|
void validate_compare(char *filename, char *weightfile) |
|
{ |
|
int i = 0; |
|
network net = parse_network_cfg(filename); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
srand(time(0)); |
|
|
|
list *plist = get_paths("data/compare.val.list"); |
|
//list *plist = get_paths("data/compare.val.old"); |
|
char **paths = (char **)list_to_array(plist); |
|
int N = plist->size/2; |
|
free_list(plist); |
|
|
|
clock_t time; |
|
int correct = 0; |
|
int total = 0; |
|
int splits = 10; |
|
int num = (i+1)*N/splits - i*N/splits; |
|
|
|
data val, buffer; |
|
|
|
load_args args = {0}; |
|
args.w = net.w; |
|
args.h = net.h; |
|
args.paths = paths; |
|
args.classes = 20; |
|
args.n = num; |
|
args.m = 0; |
|
args.d = &buffer; |
|
args.type = COMPARE_DATA; |
|
|
|
pthread_t load_thread = load_data_in_thread(args); |
|
for(i = 1; i <= splits; ++i){ |
|
time=clock(); |
|
|
|
pthread_join(load_thread, 0); |
|
val = buffer; |
|
|
|
num = (i+1)*N/splits - i*N/splits; |
|
char **part = paths+(i*N/splits); |
|
if(i != splits){ |
|
args.paths = part; |
|
load_thread = load_data_in_thread(args); |
|
} |
|
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
|
|
|
time=clock(); |
|
matrix pred = network_predict_data(net, val); |
|
int j,k; |
|
for(j = 0; j < val.y.rows; ++j){ |
|
for(k = 0; k < 20; ++k){ |
|
if(val.y.vals[j][k*2] != val.y.vals[j][k*2+1]){ |
|
++total; |
|
if((val.y.vals[j][k*2] < val.y.vals[j][k*2+1]) == (pred.vals[j][k*2] < pred.vals[j][k*2+1])){ |
|
++correct; |
|
} |
|
} |
|
} |
|
} |
|
free_matrix(pred); |
|
printf("%d: Acc: %f, %lf seconds, %d images\n", i, (float)correct/total, sec(clock()-time), val.X.rows); |
|
free_data(val); |
|
} |
|
} |
|
|
|
typedef struct { |
|
network net; |
|
char *filename; |
|
int class_id; |
|
int classes; |
|
float elo; |
|
float *elos; |
|
} sortable_bbox; |
|
|
|
int total_compares = 0; |
|
int current_class_id = 0; |
|
|
|
int elo_comparator(const void*a, const void *b) |
|
{ |
|
sortable_bbox box1 = *(sortable_bbox*)a; |
|
sortable_bbox box2 = *(sortable_bbox*)b; |
|
if(box1.elos[current_class_id] == box2.elos[current_class_id]) return 0; |
|
if(box1.elos[current_class_id] > box2.elos[current_class_id]) return -1; |
|
return 1; |
|
} |
|
|
|
int bbox_comparator(const void *a, const void *b) |
|
{ |
|
++total_compares; |
|
sortable_bbox box1 = *(sortable_bbox*)a; |
|
sortable_bbox box2 = *(sortable_bbox*)b; |
|
network net = box1.net; |
|
int class_id = box1.class_id; |
|
|
|
image im1 = load_image_color(box1.filename, net.w, net.h); |
|
image im2 = load_image_color(box2.filename, net.w, net.h); |
|
float* X = (float*)xcalloc(net.w * net.h * net.c, sizeof(float)); |
|
memcpy(X, im1.data, im1.w*im1.h*im1.c*sizeof(float)); |
|
memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c*sizeof(float)); |
|
float *predictions = network_predict(net, X); |
|
|
|
free_image(im1); |
|
free_image(im2); |
|
free(X); |
|
if (predictions[class_id*2] > predictions[class_id*2+1]){ |
|
return 1; |
|
} |
|
return -1; |
|
} |
|
|
|
void bbox_update(sortable_bbox *a, sortable_bbox *b, int class_id, int result) |
|
{ |
|
int k = 32; |
|
float EA = 1./(1+pow(10, (b->elos[class_id] - a->elos[class_id])/400.)); |
|
float EB = 1./(1+pow(10, (a->elos[class_id] - b->elos[class_id])/400.)); |
|
float SA = result ? 1 : 0; |
|
float SB = result ? 0 : 1; |
|
a->elos[class_id] += k*(SA - EA); |
|
b->elos[class_id] += k*(SB - EB); |
|
} |
|
|
|
void bbox_fight(network net, sortable_bbox *a, sortable_bbox *b, int classes, int class_id) |
|
{ |
|
image im1 = load_image_color(a->filename, net.w, net.h); |
|
image im2 = load_image_color(b->filename, net.w, net.h); |
|
float* X = (float*)xcalloc(net.w * net.h * net.c, sizeof(float)); |
|
memcpy(X, im1.data, im1.w*im1.h*im1.c*sizeof(float)); |
|
memcpy(X+im1.w*im1.h*im1.c, im2.data, im2.w*im2.h*im2.c*sizeof(float)); |
|
float *predictions = network_predict(net, X); |
|
++total_compares; |
|
|
|
int i; |
|
for(i = 0; i < classes; ++i){ |
|
if(class_id < 0 || class_id == i){ |
|
int result = predictions[i*2] > predictions[i*2+1]; |
|
bbox_update(a, b, i, result); |
|
} |
|
} |
|
|
|
free_image(im1); |
|
free_image(im2); |
|
free(X); |
|
} |
|
|
|
void SortMaster3000(char *filename, char *weightfile) |
|
{ |
|
int i = 0; |
|
network net = parse_network_cfg(filename); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
srand(time(0)); |
|
set_batch_network(&net, 1); |
|
|
|
list *plist = get_paths("data/compare.sort.list"); |
|
//list *plist = get_paths("data/compare.val.old"); |
|
char **paths = (char **)list_to_array(plist); |
|
int N = plist->size; |
|
free_list(plist); |
|
sortable_bbox* boxes = (sortable_bbox*)xcalloc(N, sizeof(sortable_bbox)); |
|
printf("Sorting %d boxes...\n", N); |
|
for(i = 0; i < N; ++i){ |
|
boxes[i].filename = paths[i]; |
|
boxes[i].net = net; |
|
boxes[i].class_id = 7; |
|
boxes[i].elo = 1500; |
|
} |
|
clock_t time=clock(); |
|
qsort(boxes, N, sizeof(sortable_bbox), bbox_comparator); |
|
for(i = 0; i < N; ++i){ |
|
printf("%s\n", boxes[i].filename); |
|
} |
|
printf("Sorted in %d compares, %f secs\n", total_compares, sec(clock()-time)); |
|
} |
|
|
|
void BattleRoyaleWithCheese(char *filename, char *weightfile) |
|
{ |
|
int classes = 20; |
|
int i,j; |
|
network net = parse_network_cfg(filename); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
srand(time(0)); |
|
set_batch_network(&net, 1); |
|
|
|
list *plist = get_paths("data/compare.sort.list"); |
|
//list *plist = get_paths("data/compare.small.list"); |
|
//list *plist = get_paths("data/compare.cat.list"); |
|
//list *plist = get_paths("data/compare.val.old"); |
|
char **paths = (char **)list_to_array(plist); |
|
int N = plist->size; |
|
int total = N; |
|
free_list(plist); |
|
sortable_bbox* boxes = (sortable_bbox*)xcalloc(N, sizeof(sortable_bbox)); |
|
printf("Battling %d boxes...\n", N); |
|
for(i = 0; i < N; ++i){ |
|
boxes[i].filename = paths[i]; |
|
boxes[i].net = net; |
|
boxes[i].classes = classes; |
|
boxes[i].elos = (float*)xcalloc(classes, sizeof(float)); |
|
for(j = 0; j < classes; ++j){ |
|
boxes[i].elos[j] = 1500; |
|
} |
|
} |
|
int round; |
|
clock_t time=clock(); |
|
for(round = 1; round <= 4; ++round){ |
|
clock_t round_time=clock(); |
|
printf("Round: %d\n", round); |
|
shuffle(boxes, N, sizeof(sortable_bbox)); |
|
for(i = 0; i < N/2; ++i){ |
|
bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, -1); |
|
} |
|
printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N); |
|
} |
|
|
|
int class_id; |
|
|
|
for (class_id = 0; class_id < classes; ++class_id){ |
|
|
|
N = total; |
|
current_class_id = class_id; |
|
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator); |
|
N /= 2; |
|
|
|
for(round = 1; round <= 100; ++round){ |
|
clock_t round_time=clock(); |
|
printf("Round: %d\n", round); |
|
|
|
sorta_shuffle(boxes, N, sizeof(sortable_bbox), 10); |
|
for(i = 0; i < N/2; ++i){ |
|
bbox_fight(net, boxes+i*2, boxes+i*2+1, classes, class_id); |
|
} |
|
qsort(boxes, N, sizeof(sortable_bbox), elo_comparator); |
|
if(round <= 20) N = (N*9/10)/2*2; |
|
|
|
printf("Round: %f secs, %d remaining\n", sec(clock()-round_time), N); |
|
} |
|
char buff[256]; |
|
sprintf(buff, "results/battle_%d.log", class_id); |
|
FILE *outfp = fopen(buff, "w"); |
|
for(i = 0; i < N; ++i){ |
|
fprintf(outfp, "%s %f\n", boxes[i].filename, boxes[i].elos[class_id]); |
|
} |
|
fclose(outfp); |
|
} |
|
printf("Tournament in %d compares, %f secs\n", total_compares, sec(clock()-time)); |
|
} |
|
|
|
void run_compare(int argc, char **argv) |
|
{ |
|
if(argc < 4){ |
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
|
return; |
|
} |
|
|
|
char *cfg = argv[3]; |
|
char *weights = (argc > 4) ? argv[4] : 0; |
|
//char *filename = (argc > 5) ? argv[5]: 0; |
|
if(0==strcmp(argv[2], "train")) train_compare(cfg, weights); |
|
else if(0==strcmp(argv[2], "valid")) validate_compare(cfg, weights); |
|
else if(0==strcmp(argv[2], "sort")) SortMaster3000(cfg, weights); |
|
else if(0==strcmp(argv[2], "battle")) BattleRoyaleWithCheese(cfg, weights); |
|
/* |
|
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights); |
|
else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights); |
|
else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights); |
|
*/ |
|
}
|
|
|