mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
148 lines
4.1 KiB
148 lines
4.1 KiB
#include "cost_layer.h" |
|
#include "utils.h" |
|
#include "dark_cuda.h" |
|
#include "blas.h" |
|
#include <math.h> |
|
#include <string.h> |
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
|
|
COST_TYPE get_cost_type(char *s) |
|
{ |
|
if (strcmp(s, "sse")==0) return SSE; |
|
if (strcmp(s, "masked")==0) return MASKED; |
|
if (strcmp(s, "smooth")==0) return SMOOTH; |
|
fprintf(stderr, "Couldn't find cost type %s, going with SSE\n", s); |
|
return SSE; |
|
} |
|
|
|
char *get_cost_string(COST_TYPE a) |
|
{ |
|
switch(a){ |
|
case SSE: |
|
return "sse"; |
|
case MASKED: |
|
return "masked"; |
|
case SMOOTH: |
|
return "smooth"; |
|
default: |
|
return "sse"; |
|
} |
|
} |
|
|
|
cost_layer make_cost_layer(int batch, int inputs, COST_TYPE cost_type, float scale) |
|
{ |
|
fprintf(stderr, "cost %4d\n", inputs); |
|
cost_layer l = { (LAYER_TYPE)0 }; |
|
l.type = COST; |
|
|
|
l.scale = scale; |
|
l.batch = batch; |
|
l.inputs = inputs; |
|
l.outputs = inputs; |
|
l.cost_type = cost_type; |
|
l.delta = (float*)xcalloc(inputs * batch, sizeof(float)); |
|
l.output = (float*)xcalloc(inputs * batch, sizeof(float)); |
|
l.cost = (float*)xcalloc(1, sizeof(float)); |
|
|
|
l.forward = forward_cost_layer; |
|
l.backward = backward_cost_layer; |
|
#ifdef GPU |
|
l.forward_gpu = forward_cost_layer_gpu; |
|
l.backward_gpu = backward_cost_layer_gpu; |
|
|
|
l.delta_gpu = cuda_make_array(l.delta, inputs*batch); |
|
l.output_gpu = cuda_make_array(l.output, inputs*batch); |
|
#endif |
|
return l; |
|
} |
|
|
|
void resize_cost_layer(cost_layer *l, int inputs) |
|
{ |
|
l->inputs = inputs; |
|
l->outputs = inputs; |
|
l->delta = (float*)xrealloc(l->delta, inputs * l->batch * sizeof(float)); |
|
l->output = (float*)xrealloc(l->output, inputs * l->batch * sizeof(float)); |
|
#ifdef GPU |
|
cuda_free(l->delta_gpu); |
|
cuda_free(l->output_gpu); |
|
l->delta_gpu = cuda_make_array(l->delta, inputs*l->batch); |
|
l->output_gpu = cuda_make_array(l->output, inputs*l->batch); |
|
#endif |
|
} |
|
|
|
void forward_cost_layer(cost_layer l, network_state state) |
|
{ |
|
if (!state.truth) return; |
|
if(l.cost_type == MASKED){ |
|
int i; |
|
for(i = 0; i < l.batch*l.inputs; ++i){ |
|
if(state.truth[i] == SECRET_NUM) state.input[i] = SECRET_NUM; |
|
} |
|
} |
|
if(l.cost_type == SMOOTH){ |
|
smooth_l1_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output); |
|
} else { |
|
l2_cpu(l.batch*l.inputs, state.input, state.truth, l.delta, l.output); |
|
} |
|
l.cost[0] = sum_array(l.output, l.batch*l.inputs); |
|
} |
|
|
|
void backward_cost_layer(const cost_layer l, network_state state) |
|
{ |
|
axpy_cpu(l.batch*l.inputs, l.scale, l.delta, 1, state.delta, 1); |
|
} |
|
|
|
#ifdef GPU |
|
|
|
void pull_cost_layer(cost_layer l) |
|
{ |
|
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs); |
|
} |
|
|
|
void push_cost_layer(cost_layer l) |
|
{ |
|
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); |
|
} |
|
|
|
int float_abs_compare (const void * a, const void * b) |
|
{ |
|
float fa = *(const float*) a; |
|
if(fa < 0) fa = -fa; |
|
float fb = *(const float*) b; |
|
if(fb < 0) fb = -fb; |
|
return (fa > fb) - (fa < fb); |
|
} |
|
|
|
void forward_cost_layer_gpu(cost_layer l, network_state state) |
|
{ |
|
if (!state.truth) return; |
|
if (l.cost_type == MASKED) { |
|
mask_ongpu(l.batch*l.inputs, state.input, SECRET_NUM, state.truth); |
|
} |
|
|
|
if(l.cost_type == SMOOTH){ |
|
smooth_l1_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu); |
|
} else { |
|
l2_gpu(l.batch*l.inputs, state.input, state.truth, l.delta_gpu, l.output_gpu); |
|
} |
|
|
|
if(l.ratio){ |
|
cuda_pull_array(l.delta_gpu, l.delta, l.batch*l.inputs); |
|
qsort(l.delta, l.batch*l.inputs, sizeof(float), float_abs_compare); |
|
int n = (1-l.ratio) * l.batch*l.inputs; |
|
float thresh = l.delta[n]; |
|
thresh = 0; |
|
printf("%f\n", thresh); |
|
supp_ongpu(l.batch*l.inputs, thresh, l.delta_gpu, 1); |
|
} |
|
|
|
cuda_pull_array(l.output_gpu, l.output, l.batch*l.inputs); |
|
l.cost[0] = sum_array(l.output, l.batch*l.inputs); |
|
} |
|
|
|
void backward_cost_layer_gpu(const cost_layer l, network_state state) |
|
{ |
|
axpy_ongpu(l.batch*l.inputs, l.scale, l.delta_gpu, 1, state.delta, 1); |
|
} |
|
#endif
|
|
|