You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

398 lines
15 KiB

#include "gru_layer.h"
#include "connected_layer.h"
#include "utils.h"
#include "dark_cuda.h"
#include "blas.h"
#include "gemm.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
static void increment_layer(layer *l, int steps)
{
int num = l->outputs*l->batch*steps;
l->output += num;
l->delta += num;
l->x += num;
l->x_norm += num;
#ifdef GPU
l->output_gpu += num;
l->delta_gpu += num;
l->x_gpu += num;
l->x_norm_gpu += num;
#endif
}
layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize)
{
fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs);
batch = batch / steps;
layer l = { (LAYER_TYPE)0 };
l.batch = batch;
l.type = GRU;
l.steps = steps;
l.inputs = inputs;
l.input_z_layer = (layer*)malloc(sizeof(layer));
fprintf(stderr, "\t\t");
*(l.input_z_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
l.input_z_layer->batch = batch;
l.state_z_layer = (layer*)malloc(sizeof(layer));
fprintf(stderr, "\t\t");
*(l.state_z_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
l.state_z_layer->batch = batch;
l.input_r_layer = (layer*)malloc(sizeof(layer));
fprintf(stderr, "\t\t");
*(l.input_r_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
l.input_r_layer->batch = batch;
l.state_r_layer = (layer*)malloc(sizeof(layer));
fprintf(stderr, "\t\t");
*(l.state_r_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
l.state_r_layer->batch = batch;
l.input_h_layer = (layer*)malloc(sizeof(layer));
fprintf(stderr, "\t\t");
*(l.input_h_layer) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize);
l.input_h_layer->batch = batch;
l.state_h_layer = (layer*)malloc(sizeof(layer));
fprintf(stderr, "\t\t");
*(l.state_h_layer) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize);
l.state_h_layer->batch = batch;
l.batch_normalize = batch_normalize;
l.outputs = outputs;
l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float));
l.delta = (float*)xcalloc(outputs * batch * steps, sizeof(float));
l.state = (float*)xcalloc(outputs * batch, sizeof(float));
l.prev_state = (float*)xcalloc(outputs * batch, sizeof(float));
l.forgot_state = (float*)xcalloc(outputs * batch, sizeof(float));
l.forgot_delta = (float*)xcalloc(outputs * batch, sizeof(float));
l.r_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
l.z_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
l.h_cpu = (float*)xcalloc(outputs * batch, sizeof(float));
l.forward = forward_gru_layer;
l.backward = backward_gru_layer;
l.update = update_gru_layer;
#ifdef GPU
l.forward_gpu = forward_gru_layer_gpu;
l.backward_gpu = backward_gru_layer_gpu;
l.update_gpu = update_gru_layer_gpu;
l.forgot_state_gpu = cuda_make_array(l.output, batch*outputs);
l.forgot_delta_gpu = cuda_make_array(l.output, batch*outputs);
l.prev_state_gpu = cuda_make_array(l.output, batch*outputs);
l.state_gpu = cuda_make_array(l.output, batch*outputs);
l.output_gpu = cuda_make_array(l.output, batch*outputs*steps);
l.delta_gpu = cuda_make_array(l.delta, batch*outputs*steps);
l.r_gpu = cuda_make_array(l.output_gpu, batch*outputs);
l.z_gpu = cuda_make_array(l.output_gpu, batch*outputs);
l.h_gpu = cuda_make_array(l.output_gpu, batch*outputs);
#endif
return l;
}
void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay)
{
update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
}
void forward_gru_layer(layer l, network_state state)
{
network_state s = {0};
s.train = state.train;
s.workspace = state.workspace;
int i;
layer input_z_layer = *(l.input_z_layer);
layer input_r_layer = *(l.input_r_layer);
layer input_h_layer = *(l.input_h_layer);
layer state_z_layer = *(l.state_z_layer);
layer state_r_layer = *(l.state_r_layer);
layer state_h_layer = *(l.state_h_layer);
fill_cpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta, 1);
fill_cpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta, 1);
fill_cpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta, 1);
fill_cpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta, 1);
fill_cpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta, 1);
fill_cpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta, 1);
if(state.train) {
fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1);
copy_cpu(l.outputs*l.batch, l.state, 1, l.prev_state, 1);
}
for (i = 0; i < l.steps; ++i) {
s.input = l.state;
forward_connected_layer(state_z_layer, s);
forward_connected_layer(state_r_layer, s);
s.input = state.input;
forward_connected_layer(input_z_layer, s);
forward_connected_layer(input_r_layer, s);
forward_connected_layer(input_h_layer, s);
copy_cpu(l.outputs*l.batch, input_z_layer.output, 1, l.z_cpu, 1);
axpy_cpu(l.outputs*l.batch, 1, state_z_layer.output, 1, l.z_cpu, 1);
copy_cpu(l.outputs*l.batch, input_r_layer.output, 1, l.r_cpu, 1);
axpy_cpu(l.outputs*l.batch, 1, state_r_layer.output, 1, l.r_cpu, 1);
activate_array(l.z_cpu, l.outputs*l.batch, LOGISTIC);
activate_array(l.r_cpu, l.outputs*l.batch, LOGISTIC);
copy_cpu(l.outputs*l.batch, l.state, 1, l.forgot_state, 1);
mul_cpu(l.outputs*l.batch, l.r_cpu, 1, l.forgot_state, 1);
s.input = l.forgot_state;
forward_connected_layer(state_h_layer, s);
copy_cpu(l.outputs*l.batch, input_h_layer.output, 1, l.h_cpu, 1);
axpy_cpu(l.outputs*l.batch, 1, state_h_layer.output, 1, l.h_cpu, 1);
#ifdef USET
activate_array(l.h_cpu, l.outputs*l.batch, TANH);
#else
activate_array(l.h_cpu, l.outputs*l.batch, LOGISTIC);
#endif
weighted_sum_cpu(l.state, l.h_cpu, l.z_cpu, l.outputs*l.batch, l.output);
copy_cpu(l.outputs*l.batch, l.output, 1, l.state, 1);
state.input += l.inputs*l.batch;
l.output += l.outputs*l.batch;
increment_layer(&input_z_layer, 1);
increment_layer(&input_r_layer, 1);
increment_layer(&input_h_layer, 1);
increment_layer(&state_z_layer, 1);
increment_layer(&state_r_layer, 1);
increment_layer(&state_h_layer, 1);
}
}
void backward_gru_layer(layer l, network_state state)
{
}
#ifdef GPU
void pull_gru_layer(layer l)
{
}
void push_gru_layer(layer l)
{
}
void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay)
{
update_connected_layer_gpu(*(l.input_r_layer), batch, learning_rate, momentum, decay);
update_connected_layer_gpu(*(l.input_z_layer), batch, learning_rate, momentum, decay);
update_connected_layer_gpu(*(l.input_h_layer), batch, learning_rate, momentum, decay);
update_connected_layer_gpu(*(l.state_r_layer), batch, learning_rate, momentum, decay);
update_connected_layer_gpu(*(l.state_z_layer), batch, learning_rate, momentum, decay);
update_connected_layer_gpu(*(l.state_h_layer), batch, learning_rate, momentum, decay);
}
void forward_gru_layer_gpu(layer l, network_state state)
{
network_state s = {0};
s.train = state.train;
s.workspace = state.workspace;
int i;
layer input_z_layer = *(l.input_z_layer);
layer input_r_layer = *(l.input_r_layer);
layer input_h_layer = *(l.input_h_layer);
layer state_z_layer = *(l.state_z_layer);
layer state_r_layer = *(l.state_r_layer);
layer state_h_layer = *(l.state_h_layer);
fill_ongpu(l.outputs * l.batch * l.steps, 0, input_z_layer.delta_gpu, 1);
fill_ongpu(l.outputs * l.batch * l.steps, 0, input_r_layer.delta_gpu, 1);
fill_ongpu(l.outputs * l.batch * l.steps, 0, input_h_layer.delta_gpu, 1);
fill_ongpu(l.outputs * l.batch * l.steps, 0, state_z_layer.delta_gpu, 1);
fill_ongpu(l.outputs * l.batch * l.steps, 0, state_r_layer.delta_gpu, 1);
fill_ongpu(l.outputs * l.batch * l.steps, 0, state_h_layer.delta_gpu, 1);
if(state.train) {
fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1);
copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.prev_state_gpu, 1);
}
for (i = 0; i < l.steps; ++i) {
s.input = l.state_gpu;
forward_connected_layer_gpu(state_z_layer, s);
forward_connected_layer_gpu(state_r_layer, s);
s.input = state.input;
forward_connected_layer_gpu(input_z_layer, s);
forward_connected_layer_gpu(input_r_layer, s);
forward_connected_layer_gpu(input_h_layer, s);
copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1);
axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1);
copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1);
axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1);
activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC);
activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC);
copy_ongpu(l.outputs*l.batch, l.state_gpu, 1, l.forgot_state_gpu, 1);
mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1);
s.input = l.forgot_state_gpu;
forward_connected_layer_gpu(state_h_layer, s);
copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1);
axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1);
#ifdef USET
activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
#else
activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC);
#endif
weighted_sum_gpu(l.state_gpu, l.h_gpu, l.z_gpu, l.outputs*l.batch, l.output_gpu);
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.state_gpu, 1);
state.input += l.inputs*l.batch;
l.output_gpu += l.outputs*l.batch;
increment_layer(&input_z_layer, 1);
increment_layer(&input_r_layer, 1);
increment_layer(&input_h_layer, 1);
increment_layer(&state_z_layer, 1);
increment_layer(&state_r_layer, 1);
increment_layer(&state_h_layer, 1);
}
}
void backward_gru_layer_gpu(layer l, network_state state)
{
network_state s = {0};
s.train = state.train;
s.workspace = state.workspace;
int i;
layer input_z_layer = *(l.input_z_layer);
layer input_r_layer = *(l.input_r_layer);
layer input_h_layer = *(l.input_h_layer);
layer state_z_layer = *(l.state_z_layer);
layer state_r_layer = *(l.state_r_layer);
layer state_h_layer = *(l.state_h_layer);
increment_layer(&input_z_layer, l.steps - 1);
increment_layer(&input_r_layer, l.steps - 1);
increment_layer(&input_h_layer, l.steps - 1);
increment_layer(&state_z_layer, l.steps - 1);
increment_layer(&state_r_layer, l.steps - 1);
increment_layer(&state_h_layer, l.steps - 1);
state.input += l.inputs*l.batch*(l.steps-1);
if(state.delta) state.delta += l.inputs*l.batch*(l.steps-1);
l.output_gpu += l.outputs*l.batch*(l.steps-1);
l.delta_gpu += l.outputs*l.batch*(l.steps-1);
for (i = l.steps-1; i >= 0; --i) {
if(i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1);
float *prev_delta_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch;
copy_ongpu(l.outputs*l.batch, input_z_layer.output_gpu, 1, l.z_gpu, 1);
axpy_ongpu(l.outputs*l.batch, 1, state_z_layer.output_gpu, 1, l.z_gpu, 1);
copy_ongpu(l.outputs*l.batch, input_r_layer.output_gpu, 1, l.r_gpu, 1);
axpy_ongpu(l.outputs*l.batch, 1, state_r_layer.output_gpu, 1, l.r_gpu, 1);
activate_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC);
activate_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC);
copy_ongpu(l.outputs*l.batch, input_h_layer.output_gpu, 1, l.h_gpu, 1);
axpy_ongpu(l.outputs*l.batch, 1, state_h_layer.output_gpu, 1, l.h_gpu, 1);
#ifdef USET
activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH);
#else
activate_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC);
#endif
weighted_delta_gpu(l.prev_state_gpu, l.h_gpu, l.z_gpu, prev_delta_gpu, input_h_layer.delta_gpu, input_z_layer.delta_gpu, l.outputs*l.batch, l.delta_gpu);
#ifdef USET
gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH, input_h_layer.delta_gpu);
#else
gradient_array_ongpu(l.h_gpu, l.outputs*l.batch, LOGISTIC, input_h_layer.delta_gpu);
#endif
copy_ongpu(l.outputs*l.batch, input_h_layer.delta_gpu, 1, state_h_layer.delta_gpu, 1);
copy_ongpu(l.outputs*l.batch, l.prev_state_gpu, 1, l.forgot_state_gpu, 1);
mul_ongpu(l.outputs*l.batch, l.r_gpu, 1, l.forgot_state_gpu, 1);
fill_ongpu(l.outputs*l.batch, 0, l.forgot_delta_gpu, 1);
s.input = l.forgot_state_gpu;
s.delta = l.forgot_delta_gpu;
backward_connected_layer_gpu(state_h_layer, s);
if(prev_delta_gpu) mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.r_gpu, prev_delta_gpu);
mult_add_into_gpu(l.outputs*l.batch, l.forgot_delta_gpu, l.prev_state_gpu, input_r_layer.delta_gpu);
gradient_array_ongpu(l.r_gpu, l.outputs*l.batch, LOGISTIC, input_r_layer.delta_gpu);
copy_ongpu(l.outputs*l.batch, input_r_layer.delta_gpu, 1, state_r_layer.delta_gpu, 1);
gradient_array_ongpu(l.z_gpu, l.outputs*l.batch, LOGISTIC, input_z_layer.delta_gpu);
copy_ongpu(l.outputs*l.batch, input_z_layer.delta_gpu, 1, state_z_layer.delta_gpu, 1);
s.input = l.prev_state_gpu;
s.delta = prev_delta_gpu;
backward_connected_layer_gpu(state_r_layer, s);
backward_connected_layer_gpu(state_z_layer, s);
s.input = state.input;
s.delta = state.delta;
backward_connected_layer_gpu(input_h_layer, s);
backward_connected_layer_gpu(input_r_layer, s);
backward_connected_layer_gpu(input_z_layer, s);
state.input -= l.inputs*l.batch;
if(state.delta) state.delta -= l.inputs*l.batch;
l.output_gpu -= l.outputs*l.batch;
l.delta_gpu -= l.outputs*l.batch;
increment_layer(&input_z_layer, -1);
increment_layer(&input_r_layer, -1);
increment_layer(&input_h_layer, -1);
increment_layer(&state_z_layer, -1);
increment_layer(&state_r_layer, -1);
increment_layer(&state_h_layer, -1);
}
}
#endif