You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1637 lines
49 KiB

#include "data.h"
#include "utils.h"
#include "image.h"
#include "dark_cuda.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define NUMCHARS 37
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
list *get_paths(char *filename)
{
char *path;
FILE *file = fopen(filename, "r");
if(!file) file_error(filename);
list *lines = make_list();
while((path=fgetl(file))){
list_insert(lines, path);
}
fclose(file);
return lines;
}
/*
char **get_random_paths_indexes(char **paths, int n, int m, int *indexes)
{
char **random_paths = calloc(n, sizeof(char*));
int i;
pthread_mutex_lock(&mutex);
for(i = 0; i < n; ++i){
int index = random_gen()%m;
indexes[i] = index;
random_paths[i] = paths[index];
if(i == 0) printf("%s\n", paths[index]);
}
pthread_mutex_unlock(&mutex);
return random_paths;
}
*/
char **get_sequential_paths(char **paths, int n, int m, int mini_batch, int augment_speed)
{
int speed = rand_int(1, augment_speed);
if (speed < 1) speed = 1;
char** sequentia_paths = (char**)calloc(n, sizeof(char*));
int i;
pthread_mutex_lock(&mutex);
//printf("n = %d, mini_batch = %d \n", n, mini_batch);
unsigned int *start_time_indexes = (unsigned int *)calloc(mini_batch, sizeof(unsigned int));
for (i = 0; i < mini_batch; ++i) {
start_time_indexes[i] = random_gen() % m;
//printf(" start_time_indexes[i] = %u, ", start_time_indexes[i]);
}
for (i = 0; i < n; ++i) {
do {
int time_line_index = i % mini_batch;
unsigned int index = start_time_indexes[time_line_index] % m;
start_time_indexes[time_line_index] += speed;
//int index = random_gen() % m;
sequentia_paths[i] = paths[index];
//if(i == 0) printf("%s\n", paths[index]);
//printf(" index = %u - grp: %s \n", index, paths[index]);
if (strlen(sequentia_paths[i]) <= 4) printf(" Very small path to the image: %s \n", sequentia_paths[i]);
} while (strlen(sequentia_paths[i]) == 0);
}
free(start_time_indexes);
pthread_mutex_unlock(&mutex);
return sequentia_paths;
}
char **get_random_paths(char **paths, int n, int m)
{
char** random_paths = (char**)calloc(n, sizeof(char*));
int i;
pthread_mutex_lock(&mutex);
//printf("n = %d \n", n);
for(i = 0; i < n; ++i){
do {
int index = random_gen() % m;
random_paths[i] = paths[index];
//if(i == 0) printf("%s\n", paths[index]);
//printf("grp: %s\n", paths[index]);
if (strlen(random_paths[i]) <= 4) printf(" Very small path to the image: %s \n", random_paths[i]);
} while (strlen(random_paths[i]) == 0);
}
pthread_mutex_unlock(&mutex);
return random_paths;
}
char **find_replace_paths(char **paths, int n, char *find, char *replace)
{
char** replace_paths = (char**)calloc(n, sizeof(char*));
int i;
for(i = 0; i < n; ++i){
char replaced[4096];
find_replace(paths[i], find, replace, replaced);
replace_paths[i] = copy_string(replaced);
}
return replace_paths;
}
matrix load_image_paths_gray(char **paths, int n, int w, int h)
{
int i;
matrix X;
X.rows = n;
X.vals = (float**)calloc(X.rows, sizeof(float*));
X.cols = 0;
for(i = 0; i < n; ++i){
image im = load_image(paths[i], w, h, 3);
image gray = grayscale_image(im);
free_image(im);
im = gray;
X.vals[i] = im.data;
X.cols = im.h*im.w*im.c;
}
return X;
}
matrix load_image_paths(char **paths, int n, int w, int h)
{
int i;
matrix X;
X.rows = n;
X.vals = (float**)calloc(X.rows, sizeof(float*));
X.cols = 0;
for(i = 0; i < n; ++i){
image im = load_image_color(paths[i], w, h);
X.vals[i] = im.data;
X.cols = im.h*im.w*im.c;
}
return X;
}
matrix load_image_augment_paths(char **paths, int n, int use_flip, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{
int i;
matrix X;
X.rows = n;
X.vals = (float**)calloc(X.rows, sizeof(float*));
X.cols = 0;
for(i = 0; i < n; ++i){
image im = load_image_color(paths[i], 0, 0);
image crop = random_augment_image(im, angle, aspect, min, max, size);
int flip = use_flip ? random_gen() % 2 : 0;
if (flip)
flip_image(crop);
random_distort_image(crop, hue, saturation, exposure);
/*
show_image(im, "orig");
show_image(crop, "crop");
cvWaitKey(0);
*/
free_image(im);
X.vals[i] = crop.data;
X.cols = crop.h*crop.w*crop.c;
}
return X;
}
extern int check_mistakes;
box_label *read_boxes(char *filename, int *n)
{
box_label* boxes = (box_label*)calloc(1, sizeof(box_label));
FILE *file = fopen(filename, "r");
if (!file) {
printf("Can't open label file. (This can be normal only if you use MSCOCO): %s \n", filename);
//file_error(filename);
FILE* fw = fopen("bad.list", "a");
fwrite(filename, sizeof(char), strlen(filename), fw);
char *new_line = "\n";
fwrite(new_line, sizeof(char), strlen(new_line), fw);
fclose(fw);
if (check_mistakes) getchar();
*n = 0;
return boxes;
}
float x, y, h, w;
int id;
int count = 0;
while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
boxes = (box_label*)realloc(boxes, (count + 1) * sizeof(box_label));
boxes[count].id = id;
boxes[count].x = x;
boxes[count].y = y;
boxes[count].h = h;
boxes[count].w = w;
boxes[count].left = x - w/2;
boxes[count].right = x + w/2;
boxes[count].top = y - h/2;
boxes[count].bottom = y + h/2;
++count;
}
fclose(file);
*n = count;
return boxes;
}
void randomize_boxes(box_label *b, int n)
{
int i;
for(i = 0; i < n; ++i){
box_label swap = b[i];
int index = random_gen()%n;
b[i] = b[index];
b[index] = swap;
}
}
void correct_boxes(box_label *boxes, int n, float dx, float dy, float sx, float sy, int flip)
{
int i;
for(i = 0; i < n; ++i){
if(boxes[i].x == 0 && boxes[i].y == 0) {
boxes[i].x = 999999;
boxes[i].y = 999999;
boxes[i].w = 999999;
boxes[i].h = 999999;
continue;
}
if ((boxes[i].x + boxes[i].w / 2) < 0 || (boxes[i].y + boxes[i].h / 2) < 0 ||
(boxes[i].x - boxes[i].w / 2) > 1 || (boxes[i].y - boxes[i].h / 2) > 1)
{
boxes[i].x = 999999;
boxes[i].y = 999999;
boxes[i].w = 999999;
boxes[i].h = 999999;
continue;
}
boxes[i].left = boxes[i].left * sx - dx;
boxes[i].right = boxes[i].right * sx - dx;
boxes[i].top = boxes[i].top * sy - dy;
boxes[i].bottom = boxes[i].bottom* sy - dy;
if(flip){
float swap = boxes[i].left;
boxes[i].left = 1. - boxes[i].right;
boxes[i].right = 1. - swap;
}
boxes[i].left = constrain(0, 1, boxes[i].left);
boxes[i].right = constrain(0, 1, boxes[i].right);
boxes[i].top = constrain(0, 1, boxes[i].top);
boxes[i].bottom = constrain(0, 1, boxes[i].bottom);
boxes[i].x = (boxes[i].left+boxes[i].right)/2;
boxes[i].y = (boxes[i].top+boxes[i].bottom)/2;
boxes[i].w = (boxes[i].right - boxes[i].left);
boxes[i].h = (boxes[i].bottom - boxes[i].top);
boxes[i].w = constrain(0, 1, boxes[i].w);
boxes[i].h = constrain(0, 1, boxes[i].h);
}
}
void fill_truth_swag(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy)
{
char labelpath[4096];
replace_image_to_label(path, labelpath);
int count = 0;
box_label *boxes = read_boxes(labelpath, &count);
randomize_boxes(boxes, count);
correct_boxes(boxes, count, dx, dy, sx, sy, flip);
float x,y,w,h;
int id;
int i;
for (i = 0; i < count && i < 30; ++i) {
x = boxes[i].x;
y = boxes[i].y;
w = boxes[i].w;
h = boxes[i].h;
id = boxes[i].id;
if (w < .0 || h < .0) continue;
int index = (4+classes) * i;
truth[index++] = x;
truth[index++] = y;
truth[index++] = w;
truth[index++] = h;
if (id < classes) truth[index+id] = 1;
}
free(boxes);
}
void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int flip, float dx, float dy, float sx, float sy)
{
char labelpath[4096];
replace_image_to_label(path, labelpath);
int count = 0;
box_label *boxes = read_boxes(labelpath, &count);
randomize_boxes(boxes, count);
correct_boxes(boxes, count, dx, dy, sx, sy, flip);
float x,y,w,h;
int id;
int i;
for (i = 0; i < count; ++i) {
x = boxes[i].x;
y = boxes[i].y;
w = boxes[i].w;
h = boxes[i].h;
id = boxes[i].id;
if (w < .001 || h < .001) continue;
int col = (int)(x*num_boxes);
int row = (int)(y*num_boxes);
x = x*num_boxes - col;
y = y*num_boxes - row;
int index = (col+row*num_boxes)*(5+classes);
if (truth[index]) continue;
truth[index++] = 1;
if (id < classes) truth[index+id] = 1;
index += classes;
truth[index++] = x;
truth[index++] = y;
truth[index++] = w;
truth[index++] = h;
}
free(boxes);
}
int fill_truth_detection(const char *path, int num_boxes, float *truth, int classes, int flip, float dx, float dy, float sx, float sy,
int net_w, int net_h)
{
char labelpath[4096];
replace_image_to_label(path, labelpath);
int count = 0;
int i;
box_label *boxes = read_boxes(labelpath, &count);
int min_w_h = 0;
float lowest_w = 1.F / net_w;
float lowest_h = 1.F / net_h;
randomize_boxes(boxes, count);
correct_boxes(boxes, count, dx, dy, sx, sy, flip);
if (count > num_boxes) count = num_boxes;
float x, y, w, h;
int id;
int sub = 0;
for (i = 0; i < count; ++i) {
x = boxes[i].x;
y = boxes[i].y;
w = boxes[i].w;
h = boxes[i].h;
id = boxes[i].id;
// not detect small objects
//if ((w < 0.001F || h < 0.001F)) continue;
// if truth (box for object) is smaller than 1x1 pix
char buff[256];
if (id >= classes) {
printf("\n Wrong annotation: class_id = %d. But class_id should be [from 0 to %d] \n", id, (classes-1));
sprintf(buff, "echo %s \"Wrong annotation: class_id = %d. But class_id should be [from 0 to %d]\" >> bad_label.list", labelpath, id, (classes-1));
system(buff);
getchar();
++sub;
continue;
}
if ((w < lowest_w || h < lowest_h)) {
//sprintf(buff, "echo %s \"Very small object: w < lowest_w OR h < lowest_h\" >> bad_label.list", labelpath);
//system(buff);
++sub;
continue;
}
if (x == 999999 || y == 999999) {
printf("\n Wrong annotation: x = 0, y = 0, < 0 or > 1 \n");
sprintf(buff, "echo %s \"Wrong annotation: x = 0 or y = 0\" >> bad_label.list", labelpath);
system(buff);
++sub;
if (check_mistakes) getchar();
continue;
}
if (x <= 0 || x > 1 || y <= 0 || y > 1) {
printf("\n Wrong annotation: x = %f, y = %f \n", x, y);
sprintf(buff, "echo %s \"Wrong annotation: x = %f, y = %f\" >> bad_label.list", labelpath, x, y);
system(buff);
++sub;
if (check_mistakes) getchar();
continue;
}
if (w > 1) {
printf("\n Wrong annotation: w = %f \n", w);
sprintf(buff, "echo %s \"Wrong annotation: w = %f\" >> bad_label.list", labelpath, w);
system(buff);
w = 1;
if (check_mistakes) getchar();
}
if (h > 1) {
printf("\n Wrong annotation: h = %f \n", h);
sprintf(buff, "echo %s \"Wrong annotation: h = %f\" >> bad_label.list", labelpath, h);
system(buff);
h = 1;
if (check_mistakes) getchar();
}
if (x == 0) x += lowest_w;
if (y == 0) y += lowest_h;
truth[(i-sub)*5+0] = x;
truth[(i-sub)*5+1] = y;
truth[(i-sub)*5+2] = w;
truth[(i-sub)*5+3] = h;
truth[(i-sub)*5+4] = id;
if (min_w_h == 0) min_w_h = w*net_w;
if (min_w_h > w*net_w) min_w_h = w*net_w;
if (min_w_h > h*net_h) min_w_h = h*net_h;
}
free(boxes);
return min_w_h;
}
void print_letters(float *pred, int n)
{
int i;
for(i = 0; i < n; ++i){
int index = max_index(pred+i*NUMCHARS, NUMCHARS);
printf("%c", int_to_alphanum(index));
}
printf("\n");
}
void fill_truth_captcha(char *path, int n, float *truth)
{
char *begin = strrchr(path, '/');
++begin;
int i;
for(i = 0; i < strlen(begin) && i < n && begin[i] != '.'; ++i){
int index = alphanum_to_int(begin[i]);
if(index > 35) printf("Bad %c\n", begin[i]);
truth[i*NUMCHARS+index] = 1;
}
for(;i < n; ++i){
truth[i*NUMCHARS + NUMCHARS-1] = 1;
}
}
data load_data_captcha(char **paths, int n, int m, int k, int w, int h)
{
if(m) paths = get_random_paths(paths, n, m);
data d = {0};
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.y = make_matrix(n, k*NUMCHARS);
int i;
for(i = 0; i < n; ++i){
fill_truth_captcha(paths[i], k, d.y.vals[i]);
}
if(m) free(paths);
return d;
}
data load_data_captcha_encode(char **paths, int n, int m, int w, int h)
{
if(m) paths = get_random_paths(paths, n, m);
data d = {0};
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.X.cols = 17100;
d.y = d.X;
if(m) free(paths);
return d;
}
void fill_truth(char *path, char **labels, int k, float *truth)
{
int i;
memset(truth, 0, k*sizeof(float));
int count = 0;
for(i = 0; i < k; ++i){
if(strstr(path, labels[i])){
truth[i] = 1;
++count;
}
}
if(count != 1) printf("Too many or too few labels: %d, %s\n", count, path);
}
void fill_hierarchy(float *truth, int k, tree *hierarchy)
{
int j;
for(j = 0; j < k; ++j){
if(truth[j]){
int parent = hierarchy->parent[j];
while(parent >= 0){
truth[parent] = 1;
parent = hierarchy->parent[parent];
}
}
}
int i;
int count = 0;
for(j = 0; j < hierarchy->groups; ++j){
//printf("%d\n", count);
int mask = 1;
for(i = 0; i < hierarchy->group_size[j]; ++i){
if(truth[count + i]){
mask = 0;
break;
}
}
if (mask) {
for(i = 0; i < hierarchy->group_size[j]; ++i){
truth[count + i] = SECRET_NUM;
}
}
count += hierarchy->group_size[j];
}
}
matrix load_labels_paths(char **paths, int n, char **labels, int k, tree *hierarchy)
{
matrix y = make_matrix(n, k);
int i;
for(i = 0; i < n && labels; ++i){
fill_truth(paths[i], labels, k, y.vals[i]);
if(hierarchy){
fill_hierarchy(y.vals[i], k, hierarchy);
}
}
return y;
}
matrix load_tags_paths(char **paths, int n, int k)
{
matrix y = make_matrix(n, k);
int i;
int count = 0;
for(i = 0; i < n; ++i){
char label[4096];
find_replace(paths[i], "imgs", "labels", label);
find_replace(label, "_iconl.jpeg", ".txt", label);
FILE *file = fopen(label, "r");
if(!file){
find_replace(label, "labels", "labels2", label);
file = fopen(label, "r");
if(!file) continue;
}
++count;
int tag;
while(fscanf(file, "%d", &tag) == 1){
if(tag < k){
y.vals[i][tag] = 1;
}
}
fclose(file);
}
printf("%d/%d\n", count, n);
return y;
}
char **get_labels_custom(char *filename, int *size)
{
list *plist = get_paths(filename);
if(size) *size = plist->size;
char **labels = (char **)list_to_array(plist);
free_list(plist);
return labels;
}
char **get_labels(char *filename)
{
return get_labels_custom(filename, NULL);
}
void free_data(data d)
{
if(!d.shallow){
free_matrix(d.X);
free_matrix(d.y);
}else{
free(d.X.vals);
free(d.y.vals);
}
}
data load_data_region(int n, char **paths, int m, int w, int h, int size, int classes, float jitter, float hue, float saturation, float exposure)
{
char **random_paths = get_random_paths(paths, n, m);
int i;
data d = {0};
d.shallow = 0;
d.X.rows = n;
d.X.vals = (float**)calloc(d.X.rows, sizeof(float*));
d.X.cols = h*w*3;
int k = size*size*(5+classes);
d.y = make_matrix(n, k);
for(i = 0; i < n; ++i){
image orig = load_image_color(random_paths[i], 0, 0);
int oh = orig.h;
int ow = orig.w;
int dw = (ow*jitter);
int dh = (oh*jitter);
int pleft = rand_uniform(-dw, dw);
int pright = rand_uniform(-dw, dw);
int ptop = rand_uniform(-dh, dh);
int pbot = rand_uniform(-dh, dh);
int swidth = ow - pleft - pright;
int sheight = oh - ptop - pbot;
float sx = (float)swidth / ow;
float sy = (float)sheight / oh;
int flip = random_gen()%2;
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
float dx = ((float)pleft/ow)/sx;
float dy = ((float)ptop /oh)/sy;
image sized = resize_image(cropped, w, h);
if(flip) flip_image(sized);
random_distort_image(sized, hue, saturation, exposure);
d.X.vals[i] = sized.data;
fill_truth_region(random_paths[i], d.y.vals[i], classes, size, flip, dx, dy, 1./sx, 1./sy);
free_image(orig);
free_image(cropped);
}
free(random_paths);
return d;
}
data load_data_compare(int n, char **paths, int m, int classes, int w, int h)
{
if(m) paths = get_random_paths(paths, 2*n, m);
int i,j;
data d = {0};
d.shallow = 0;
d.X.rows = n;
d.X.vals = (float**)calloc(d.X.rows, sizeof(float*));
d.X.cols = h*w*6;
int k = 2*(classes);
d.y = make_matrix(n, k);
for(i = 0; i < n; ++i){
image im1 = load_image_color(paths[i*2], w, h);
image im2 = load_image_color(paths[i*2+1], w, h);
d.X.vals[i] = (float*)calloc(d.X.cols, sizeof(float));
memcpy(d.X.vals[i], im1.data, h*w*3*sizeof(float));
memcpy(d.X.vals[i] + h*w*3, im2.data, h*w*3*sizeof(float));
int id;
float iou;
char imlabel1[4096];
char imlabel2[4096];
find_replace(paths[i*2], "imgs", "labels", imlabel1);
find_replace(imlabel1, "jpg", "txt", imlabel1);
FILE *fp1 = fopen(imlabel1, "r");
while(fscanf(fp1, "%d %f", &id, &iou) == 2){
if (d.y.vals[i][2*id] < iou) d.y.vals[i][2*id] = iou;
}
find_replace(paths[i*2+1], "imgs", "labels", imlabel2);
find_replace(imlabel2, "jpg", "txt", imlabel2);
FILE *fp2 = fopen(imlabel2, "r");
while(fscanf(fp2, "%d %f", &id, &iou) == 2){
if (d.y.vals[i][2*id + 1] < iou) d.y.vals[i][2*id + 1] = iou;
}
for (j = 0; j < classes; ++j){
if (d.y.vals[i][2*j] > .5 && d.y.vals[i][2*j+1] < .5){
d.y.vals[i][2*j] = 1;
d.y.vals[i][2*j+1] = 0;
} else if (d.y.vals[i][2*j] < .5 && d.y.vals[i][2*j+1] > .5){
d.y.vals[i][2*j] = 0;
d.y.vals[i][2*j+1] = 1;
} else {
d.y.vals[i][2*j] = SECRET_NUM;
d.y.vals[i][2*j+1] = SECRET_NUM;
}
}
fclose(fp1);
fclose(fp2);
free_image(im1);
free_image(im2);
}
if(m) free(paths);
return d;
}
data load_data_swag(char **paths, int n, int classes, float jitter)
{
int index = random_gen()%n;
char *random_path = paths[index];
image orig = load_image_color(random_path, 0, 0);
int h = orig.h;
int w = orig.w;
data d = {0};
d.shallow = 0;
d.w = w;
d.h = h;
d.X.rows = 1;
d.X.vals = (float**)calloc(d.X.rows, sizeof(float*));
d.X.cols = h*w*3;
int k = (4+classes)*30;
d.y = make_matrix(1, k);
int dw = w*jitter;
int dh = h*jitter;
int pleft = rand_uniform(-dw, dw);
int pright = rand_uniform(-dw, dw);
int ptop = rand_uniform(-dh, dh);
int pbot = rand_uniform(-dh, dh);
int swidth = w - pleft - pright;
int sheight = h - ptop - pbot;
float sx = (float)swidth / w;
float sy = (float)sheight / h;
int flip = random_gen()%2;
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
float dx = ((float)pleft/w)/sx;
float dy = ((float)ptop /h)/sy;
image sized = resize_image(cropped, w, h);
if(flip) flip_image(sized);
d.X.vals[0] = sized.data;
fill_truth_swag(random_path, d.y.vals[0], classes, flip, dx, dy, 1./sx, 1./sy);
free_image(orig);
free_image(cropped);
return d;
}
static box float_to_box_stride(float *f, int stride)
{
box b = { 0 };
b.x = f[0];
b.y = f[1 * stride];
b.w = f[2 * stride];
b.h = f[3 * stride];
return b;
}
void blend_truth(float *new_truth, int boxes, float *old_truth)
{
const int t_size = 4 + 1;
int count_new_truth = 0;
int t;
for (t = 0; t < boxes; ++t) {
float x = new_truth[t*(4 + 1)];
if (!x) break;
count_new_truth++;
}
for (t = count_new_truth; t < boxes; ++t) {
float *new_truth_ptr = new_truth + t*t_size;
float *old_truth_ptr = old_truth + (t - count_new_truth)*t_size;
float x = old_truth_ptr[0];
if (!x) break;
new_truth_ptr[0] = old_truth_ptr[0];
new_truth_ptr[1] = old_truth_ptr[1];
new_truth_ptr[2] = old_truth_ptr[2];
new_truth_ptr[3] = old_truth_ptr[3];
new_truth_ptr[4] = old_truth_ptr[4];
}
//printf("\n was %d bboxes, now %d bboxes \n", count_new_truth, t);
}
#ifdef OPENCV
#include "http_stream.h"
data load_data_detection(int n, char **paths, int m, int w, int h, int c, int boxes, int classes, int use_flip, int use_blur, int use_mixup,
float jitter, float hue, float saturation, float exposure, int mini_batch, int track, int augment_speed, int letter_box, int show_imgs)
{
const int random_index = random_gen();
c = c ? c : 3;
char **random_paths;
char **mixup_random_paths = NULL;
if (track) random_paths = get_sequential_paths(paths, n, m, mini_batch, augment_speed);
else random_paths = get_random_paths(paths, n, m);
int mixup = use_mixup ? random_gen() % 2 : 0;
//printf("\n mixup = %d \n", mixup);
if (mixup) {
if (track) mixup_random_paths = get_sequential_paths(paths, n, m, mini_batch, augment_speed);
else mixup_random_paths = get_random_paths(paths, n, m);
}
int i;
data d = {0};
d.shallow = 0;
d.X.rows = n;
d.X.vals = (float**)calloc(d.X.rows, sizeof(float*));
d.X.cols = h*w*c;
float r1 = 0, r2 = 0, r3 = 0, r4 = 0, r_scale = 0;
float dhue = 0, dsat = 0, dexp = 0, flip = 0, blur = 0;
int augmentation_calculated = 0;
d.y = make_matrix(n, 5*boxes);
int i_mixup = 0;
for (i_mixup = 0; i_mixup <= mixup; i_mixup++) {
if (i_mixup) augmentation_calculated = 0;
for (i = 0; i < n; ++i) {
float *truth = (float*)calloc(5 * boxes, sizeof(float));
const char *filename = (i_mixup) ? mixup_random_paths[i] : random_paths[i];
int flag = (c >= 3);
mat_cv *src;
src = load_image_mat_cv(filename, flag);
if (src == NULL) {
if (check_mistakes) getchar();
continue;
}
int oh = get_height_mat(src);
int ow = get_width_mat(src);
int dw = (ow*jitter);
int dh = (oh*jitter);
if (!augmentation_calculated || !track)
{
augmentation_calculated = 1;
r1 = random_float();
r2 = random_float();
r3 = random_float();
r4 = random_float();
r_scale = random_float();
dhue = rand_uniform_strong(-hue, hue);
dsat = rand_scale(saturation);
dexp = rand_scale(exposure);
flip = use_flip ? random_gen() % 2 : 0;
blur = rand_int(0, 1) ? (use_blur) : 0;
}
int pleft = rand_precalc_random(-dw, dw, r1);
int pright = rand_precalc_random(-dw, dw, r2);
int ptop = rand_precalc_random(-dh, dh, r3);
int pbot = rand_precalc_random(-dh, dh, r4);
//printf("\n pleft = %d, pright = %d, ptop = %d, pbot = %d, ow = %d, oh = %d \n", pleft, pright, ptop, pbot, ow, oh);
float scale = rand_precalc_random(.25, 2, r_scale); // unused currently
if (letter_box)
{
float img_ar = (float)ow / (float)oh;
float net_ar = (float)w / (float)h;
float result_ar = img_ar / net_ar;
//printf(" ow = %d, oh = %d, w = %d, h = %d, img_ar = %f, net_ar = %f, result_ar = %f \n", ow, oh, w, h, img_ar, net_ar, result_ar);
if (result_ar > 1) // sheight - should be increased
{
float oh_tmp = ow / net_ar;
float delta_h = (oh_tmp - oh)/2;
ptop = ptop - delta_h;
pbot = pbot - delta_h;
//printf(" result_ar = %f, oh_tmp = %f, delta_h = %d, ptop = %f, pbot = %f \n", result_ar, oh_tmp, delta_h, ptop, pbot);
}
else // swidth - should be increased
{
float ow_tmp = oh * net_ar;
float delta_w = (ow_tmp - ow)/2;
pleft = pleft - delta_w;
pright = pright - delta_w;
//printf(" result_ar = %f, ow_tmp = %f, delta_w = %d, pleft = %f, pright = %f \n", result_ar, ow_tmp, delta_w, pleft, pright);
}
}
int swidth = ow - pleft - pright;
int sheight = oh - ptop - pbot;
float sx = (float)swidth / ow;
float sy = (float)sheight / oh;
float dx = ((float)pleft / ow) / sx;
float dy = ((float)ptop / oh) / sy;
int min_w_h = fill_truth_detection(filename, boxes, truth, classes, flip, dx, dy, 1. / sx, 1. / sy, w, h);
if (min_w_h < blur*4) blur = 0; // disable blur if one of the objects is too small
image ai = image_data_augmentation(src, w, h, pleft, ptop, swidth, sheight, flip, dhue, dsat, dexp,
blur, boxes, d.y.vals[i]);
if (i_mixup) {
image old_img = ai;
old_img.data = d.X.vals[i];
//show_image(ai, "new");
//show_image(old_img, "old");
//wait_until_press_key_cv();
blend_images_cv(ai, 0.5, old_img, 0.5);
blend_truth(truth, boxes, d.y.vals[i]);
free_image(old_img);
}
d.X.vals[i] = ai.data;
memcpy(d.y.vals[i], truth, 5*boxes * sizeof(float));
if (show_imgs)// && i_mixup) // delete i_mixup
{
image tmp_ai = copy_image(ai);
char buff[1000];
sprintf(buff, "aug_%d_%d_%s_%d", random_index, i, basecfg((char*)filename), random_gen());
int t;
for (t = 0; t < boxes; ++t) {
box b = float_to_box_stride(d.y.vals[i] + t*(4 + 1), 1);
if (!b.x) break;
int left = (b.x - b.w / 2.)*ai.w;
int right = (b.x + b.w / 2.)*ai.w;
int top = (b.y - b.h / 2.)*ai.h;
int bot = (b.y + b.h / 2.)*ai.h;
draw_box_width(tmp_ai, left, top, right, bot, 1, 150, 100, 50); // 3 channels RGB
}
save_image(tmp_ai, buff);
if (show_imgs == 1) {
//char buff_src[1000];
//sprintf(buff_src, "src_%d_%d_%s_%d", random_index, i, basecfg((char*)filename), random_gen());
//show_image_mat(src, buff_src);
show_image(tmp_ai, buff);
wait_until_press_key_cv();
}
printf("\nYou use flag -show_imgs, so will be saved aug_...jpg images. Click on window and press ESC button \n");
free_image(tmp_ai);
}
release_mat(&src);
free(truth);
}
}
free(random_paths);
if(mixup_random_paths) free(mixup_random_paths);
return d;
}
#else // OPENCV
void blend_images(image new_img, float alpha, image old_img, float beta)
{
int i;
int data_size = new_img.w * new_img.h * new_img.c;
#pragma omp parallel for
for (i = 0; i < data_size; ++i)
new_img.data[i] = new_img.data[i] * alpha + old_img.data[i] * beta;
}
data load_data_detection(int n, char **paths, int m, int w, int h, int c, int boxes, int classes, int use_flip, int use_blur, int use_mixup, float jitter,
float hue, float saturation, float exposure, int mini_batch, int track, int augment_speed, int letter_box, int show_imgs)
{
const int random_index = random_gen();
c = c ? c : 3;
char **random_paths;
char **mixup_random_paths = NULL;
if(track) random_paths = get_sequential_paths(paths, n, m, mini_batch, augment_speed);
else random_paths = get_random_paths(paths, n, m);
int mixup = use_mixup ? random_gen() % 2 : 0;
//printf("\n mixup = %d \n", mixup);
if (mixup) {
if (track) mixup_random_paths = get_sequential_paths(paths, n, m, mini_batch, augment_speed);
else mixup_random_paths = get_random_paths(paths, n, m);
}
int i;
data d = { 0 };
d.shallow = 0;
d.X.rows = n;
d.X.vals = (float**)calloc(d.X.rows, sizeof(float*));
d.X.cols = h*w*c;
float r1 = 0, r2 = 0, r3 = 0, r4 = 0, r_scale;
float dhue = 0, dsat = 0, dexp = 0, flip = 0;
int augmentation_calculated = 0;
d.y = make_matrix(n, 5 * boxes);
int i_mixup = 0;
for (i_mixup = 0; i_mixup <= mixup; i_mixup++) {
if (i_mixup) augmentation_calculated = 0;
for (i = 0; i < n; ++i) {
float *truth = (float*)calloc(5 * boxes, sizeof(float));
char *filename = (i_mixup) ? mixup_random_paths[i] : random_paths[i];
image orig = load_image(filename, 0, 0, c);
int oh = orig.h;
int ow = orig.w;
int dw = (ow*jitter);
int dh = (oh*jitter);
if (!augmentation_calculated || !track)
{
augmentation_calculated = 1;
r1 = random_float();
r2 = random_float();
r3 = random_float();
r4 = random_float();
r_scale = random_float();
dhue = rand_uniform_strong(-hue, hue);
dsat = rand_scale(saturation);
dexp = rand_scale(exposure);
flip = use_flip ? random_gen() % 2 : 0;
}
int pleft = rand_precalc_random(-dw, dw, r1);
int pright = rand_precalc_random(-dw, dw, r2);
int ptop = rand_precalc_random(-dh, dh, r3);
int pbot = rand_precalc_random(-dh, dh, r4);
float scale = rand_precalc_random(.25, 2, r_scale); // unused currently
if (letter_box)
{
float img_ar = (float)ow / (float)oh;
float net_ar = (float)w / (float)h;
float result_ar = img_ar / net_ar;
//printf(" ow = %d, oh = %d, w = %d, h = %d, img_ar = %f, net_ar = %f, result_ar = %f \n", ow, oh, w, h, img_ar, net_ar, result_ar);
if (result_ar > 1) // sheight - should be increased
{
float oh_tmp = ow / net_ar;
float delta_h = (oh_tmp - oh) / 2;
ptop = ptop - delta_h;
pbot = pbot - delta_h;
//printf(" result_ar = %f, oh_tmp = %f, delta_h = %d, ptop = %f, pbot = %f \n", result_ar, oh_tmp, delta_h, ptop, pbot);
}
else // swidth - should be increased
{
float ow_tmp = oh * net_ar;
float delta_w = (ow_tmp - ow) / 2;
pleft = pleft - delta_w;
pright = pright - delta_w;
//printf(" result_ar = %f, ow_tmp = %f, delta_w = %d, pleft = %f, pright = %f \n", result_ar, ow_tmp, delta_w, pleft, pright);
}
}
int swidth = ow - pleft - pright;
int sheight = oh - ptop - pbot;
float sx = (float)swidth / ow;
float sy = (float)sheight / oh;
image cropped = crop_image(orig, pleft, ptop, swidth, sheight);
float dx = ((float)pleft / ow) / sx;
float dy = ((float)ptop / oh) / sy;
image sized = resize_image(cropped, w, h);
if (flip) flip_image(sized);
distort_image(sized, dhue, dsat, dexp);
//random_distort_image(sized, hue, saturation, exposure);
fill_truth_detection(filename, boxes, truth, classes, flip, dx, dy, 1. / sx, 1. / sy, w, h);
if (i_mixup) {
image old_img = sized;
old_img.data = d.X.vals[i];
//show_image(sized, "new");
//show_image(old_img, "old");
//wait_until_press_key_cv();
blend_images(sized, 0.5, old_img, 0.5);
blend_truth(truth, boxes, d.y.vals[i]);
free_image(old_img);
}
d.X.vals[i] = sized.data;
memcpy(d.y.vals[i], truth, 5 * boxes * sizeof(float));
if (show_imgs)// && i_mixup)
{
char buff[1000];
sprintf(buff, "aug_%d_%d_%s_%d", random_index, i, basecfg(filename), random_gen());
int t;
for (t = 0; t < boxes; ++t) {
box b = float_to_box_stride(d.y.vals[i] + t*(4 + 1), 1);
if (!b.x) break;
int left = (b.x - b.w / 2.)*sized.w;
int right = (b.x + b.w / 2.)*sized.w;
int top = (b.y - b.h / 2.)*sized.h;
int bot = (b.y + b.h / 2.)*sized.h;
draw_box_width(sized, left, top, right, bot, 1, 150, 100, 50); // 3 channels RGB
}
save_image(sized, buff);
if (show_imgs == 1) {
show_image(sized, buff);
wait_until_press_key_cv();
}
printf("\nYou use flag -show_imgs, so will be saved aug_...jpg images. Press Enter: \n");
//getchar();
}
free_image(orig);
free_image(cropped);
free(truth);
}
}
free(random_paths);
if (mixup_random_paths) free(mixup_random_paths);
return d;
}
#endif // OPENCV
void *load_thread(void *ptr)
{
//srand(time(0));
//printf("Loading data: %d\n", random_gen());
load_args a = *(struct load_args*)ptr;
if(a.exposure == 0) a.exposure = 1;
if(a.saturation == 0) a.saturation = 1;
if(a.aspect == 0) a.aspect = 1;
if (a.type == OLD_CLASSIFICATION_DATA){
*a.d = load_data_old(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h);
} else if (a.type == CLASSIFICATION_DATA){
*a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.hierarchy, a.flip, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
} else if (a.type == SUPER_DATA){
*a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale);
} else if (a.type == WRITING_DATA){
*a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h);
} else if (a.type == REGION_DATA){
*a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure);
} else if (a.type == DETECTION_DATA){
*a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.c, a.num_boxes, a.classes, a.flip, a.blur, a.mixup, a.jitter,
a.hue, a.saturation, a.exposure, a.mini_batch, a.track, a.augment_speed, a.letter_box, a.show_imgs);
} else if (a.type == SWAG_DATA){
*a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter);
} else if (a.type == COMPARE_DATA){
*a.d = load_data_compare(a.n, a.paths, a.m, a.classes, a.w, a.h);
} else if (a.type == IMAGE_DATA){
*(a.im) = load_image(a.path, 0, 0, a.c);
*(a.resized) = resize_image(*(a.im), a.w, a.h);
}else if (a.type == LETTERBOX_DATA) {
*(a.im) = load_image(a.path, 0, 0, a.c);
*(a.resized) = letterbox_image(*(a.im), a.w, a.h);
} else if (a.type == TAG_DATA){
*a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.flip, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure);
}
free(ptr);
return 0;
}
pthread_t load_data_in_thread(load_args args)
{
pthread_t thread;
struct load_args* ptr = (load_args*)calloc(1, sizeof(struct load_args));
*ptr = args;
if(pthread_create(&thread, 0, load_thread, ptr)) error("Thread creation failed");
return thread;
}
void *load_threads(void *ptr)
{
//srand(time(0));
int i;
load_args args = *(load_args *)ptr;
if (args.threads == 0) args.threads = 1;
data *out = args.d;
int total = args.n;
free(ptr);
data* buffers = (data*)calloc(args.threads, sizeof(data));
pthread_t* threads = (pthread_t*)calloc(args.threads, sizeof(pthread_t));
for(i = 0; i < args.threads; ++i){
args.d = buffers + i;
args.n = (i+1) * total/args.threads - i * total/args.threads;
threads[i] = load_data_in_thread(args);
}
for(i = 0; i < args.threads; ++i){
pthread_join(threads[i], 0);
}
*out = concat_datas(buffers, args.threads);
out->shallow = 0;
for(i = 0; i < args.threads; ++i){
buffers[i].shallow = 1;
free_data(buffers[i]);
}
free(buffers);
free(threads);
return 0;
}
pthread_t load_data(load_args args)
{
pthread_t thread;
struct load_args* ptr = (load_args*)calloc(1, sizeof(struct load_args));
*ptr = args;
if(pthread_create(&thread, 0, load_threads, ptr)) error("Thread creation failed");
return thread;
}
data load_data_writing(char **paths, int n, int m, int w, int h, int out_w, int out_h)
{
if(m) paths = get_random_paths(paths, n, m);
char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png");
data d = {0};
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.y = load_image_paths_gray(replace_paths, n, out_w, out_h);
if(m) free(paths);
int i;
for(i = 0; i < n; ++i) free(replace_paths[i]);
free(replace_paths);
return d;
}
data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h)
{
if(m) paths = get_random_paths(paths, n, m);
data d = {0};
d.shallow = 0;
d.X = load_image_paths(paths, n, w, h);
d.y = load_labels_paths(paths, n, labels, k, 0);
if(m) free(paths);
return d;
}
/*
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{
data d = {0};
d.indexes = calloc(n, sizeof(int));
if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes);
d.shallow = 0;
d.X = load_image_augment_paths(paths, n, flip, min, max, size, angle, aspect, hue, saturation, exposure);
d.y = load_labels_paths(paths, n, labels, k);
if(m) free(paths);
return d;
}
*/
data load_data_super(char **paths, int n, int m, int w, int h, int scale)
{
if(m) paths = get_random_paths(paths, n, m);
data d = {0};
d.shallow = 0;
int i;
d.X.rows = n;
d.X.vals = (float**)calloc(n, sizeof(float*));
d.X.cols = w*h*3;
d.y.rows = n;
d.y.vals = (float**)calloc(n, sizeof(float*));
d.y.cols = w*scale * h*scale * 3;
for(i = 0; i < n; ++i){
image im = load_image_color(paths[i], 0, 0);
image crop = random_crop_image(im, w*scale, h*scale);
int flip = random_gen()%2;
if (flip) flip_image(crop);
image resize = resize_image(crop, w, h);
d.X.vals[i] = resize.data;
d.y.vals[i] = crop.data;
free_image(im);
}
if(m) free(paths);
return d;
}
data load_data_augment(char **paths, int n, int m, char **labels, int k, tree *hierarchy, int use_flip, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{
if(m) paths = get_random_paths(paths, n, m);
data d = {0};
d.shallow = 0;
d.X = load_image_augment_paths(paths, n, use_flip, min, max, size, angle, aspect, hue, saturation, exposure);
d.y = load_labels_paths(paths, n, labels, k, hierarchy);
if(m) free(paths);
return d;
}
data load_data_tag(char **paths, int n, int m, int k, int use_flip, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure)
{
if(m) paths = get_random_paths(paths, n, m);
data d = {0};
d.w = size;
d.h = size;
d.shallow = 0;
d.X = load_image_augment_paths(paths, n, use_flip, min, max, size, angle, aspect, hue, saturation, exposure);
d.y = load_tags_paths(paths, n, k);
if(m) free(paths);
return d;
}
matrix concat_matrix(matrix m1, matrix m2)
{
int i, count = 0;
matrix m;
m.cols = m1.cols;
m.rows = m1.rows+m2.rows;
m.vals = (float**)calloc(m1.rows + m2.rows, sizeof(float*));
for(i = 0; i < m1.rows; ++i){
m.vals[count++] = m1.vals[i];
}
for(i = 0; i < m2.rows; ++i){
m.vals[count++] = m2.vals[i];
}
return m;
}
data concat_data(data d1, data d2)
{
data d = {0};
d.shallow = 1;
d.X = concat_matrix(d1.X, d2.X);
d.y = concat_matrix(d1.y, d2.y);
return d;
}
data concat_datas(data *d, int n)
{
int i;
data out = {0};
for(i = 0; i < n; ++i){
data newdata = concat_data(d[i], out);
free_data(out);
out = newdata;
}
return out;
}
data load_categorical_data_csv(char *filename, int target, int k)
{
data d = {0};
d.shallow = 0;
matrix X = csv_to_matrix(filename);
float *truth_1d = pop_column(&X, target);
float **truth = one_hot_encode(truth_1d, X.rows, k);
matrix y;
y.rows = X.rows;
y.cols = k;
y.vals = truth;
d.X = X;
d.y = y;
free(truth_1d);
return d;
}
data load_cifar10_data(char *filename)
{
data d = {0};
d.shallow = 0;
long i,j;
matrix X = make_matrix(10000, 3072);
matrix y = make_matrix(10000, 10);
d.X = X;
d.y = y;
FILE *fp = fopen(filename, "rb");
if(!fp) file_error(filename);
for(i = 0; i < 10000; ++i){
unsigned char bytes[3073];
fread(bytes, 1, 3073, fp);
int class_id = bytes[0];
y.vals[i][class_id] = 1;
for(j = 0; j < X.cols; ++j){
X.vals[i][j] = (double)bytes[j+1];
}
}
//translate_data_rows(d, -128);
scale_data_rows(d, 1./255);
//normalize_data_rows(d);
fclose(fp);
return d;
}
void get_random_batch(data d, int n, float *X, float *y)
{
int j;
for(j = 0; j < n; ++j){
int index = random_gen()%d.X.rows;
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
}
}
void get_next_batch(data d, int n, int offset, float *X, float *y)
{
int j;
for(j = 0; j < n; ++j){
int index = offset + j;
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
}
}
void smooth_data(data d)
{
int i, j;
float scale = 1. / d.y.cols;
float eps = .1;
for(i = 0; i < d.y.rows; ++i){
for(j = 0; j < d.y.cols; ++j){
d.y.vals[i][j] = eps * scale + (1-eps) * d.y.vals[i][j];
}
}
}
data load_all_cifar10()
{
data d = {0};
d.shallow = 0;
int i,j,b;
matrix X = make_matrix(50000, 3072);
matrix y = make_matrix(50000, 10);
d.X = X;
d.y = y;
for(b = 0; b < 5; ++b){
char buff[256];
sprintf(buff, "data/cifar/cifar-10-batches-bin/data_batch_%d.bin", b+1);
FILE *fp = fopen(buff, "rb");
if(!fp) file_error(buff);
for(i = 0; i < 10000; ++i){
unsigned char bytes[3073];
fread(bytes, 1, 3073, fp);
int class_id = bytes[0];
y.vals[i+b*10000][class_id] = 1;
for(j = 0; j < X.cols; ++j){
X.vals[i+b*10000][j] = (double)bytes[j+1];
}
}
fclose(fp);
}
//normalize_data_rows(d);
//translate_data_rows(d, -128);
scale_data_rows(d, 1./255);
smooth_data(d);
return d;
}
data load_go(char *filename)
{
FILE *fp = fopen(filename, "rb");
matrix X = make_matrix(3363059, 361);
matrix y = make_matrix(3363059, 361);
int row, col;
if(!fp) file_error(filename);
char *label;
int count = 0;
while((label = fgetl(fp))){
int i;
if(count == X.rows){
X = resize_matrix(X, count*2);
y = resize_matrix(y, count*2);
}
sscanf(label, "%d %d", &row, &col);
char *board = fgetl(fp);
int index = row*19 + col;
y.vals[count][index] = 1;
for(i = 0; i < 19*19; ++i){
float val = 0;
if(board[i] == '1') val = 1;
else if(board[i] == '2') val = -1;
X.vals[count][i] = val;
}
++count;
free(label);
free(board);
}
X = resize_matrix(X, count);
y = resize_matrix(y, count);
data d = {0};
d.shallow = 0;
d.X = X;
d.y = y;
fclose(fp);
return d;
}
void randomize_data(data d)
{
int i;
for(i = d.X.rows-1; i > 0; --i){
int index = random_gen()%i;
float *swap = d.X.vals[index];
d.X.vals[index] = d.X.vals[i];
d.X.vals[i] = swap;
swap = d.y.vals[index];
d.y.vals[index] = d.y.vals[i];
d.y.vals[i] = swap;
}
}
void scale_data_rows(data d, float s)
{
int i;
for(i = 0; i < d.X.rows; ++i){
scale_array(d.X.vals[i], d.X.cols, s);
}
}
void translate_data_rows(data d, float s)
{
int i;
for(i = 0; i < d.X.rows; ++i){
translate_array(d.X.vals[i], d.X.cols, s);
}
}
void normalize_data_rows(data d)
{
int i;
for(i = 0; i < d.X.rows; ++i){
normalize_array(d.X.vals[i], d.X.cols);
}
}
data get_data_part(data d, int part, int total)
{
data p = {0};
p.shallow = 1;
p.X.rows = d.X.rows * (part + 1) / total - d.X.rows * part / total;
p.y.rows = d.y.rows * (part + 1) / total - d.y.rows * part / total;
p.X.cols = d.X.cols;
p.y.cols = d.y.cols;
p.X.vals = d.X.vals + d.X.rows * part / total;
p.y.vals = d.y.vals + d.y.rows * part / total;
return p;
}
data get_random_data(data d, int num)
{
data r = {0};
r.shallow = 1;
r.X.rows = num;
r.y.rows = num;
r.X.cols = d.X.cols;
r.y.cols = d.y.cols;
r.X.vals = (float**)calloc(num, sizeof(float*));
r.y.vals = (float**)calloc(num, sizeof(float*));
int i;
for(i = 0; i < num; ++i){
int index = random_gen()%d.X.rows;
r.X.vals[i] = d.X.vals[index];
r.y.vals[i] = d.y.vals[index];
}
return r;
}
data *split_data(data d, int part, int total)
{
data* split = (data*)calloc(2, sizeof(data));
int i;
int start = part*d.X.rows/total;
int end = (part+1)*d.X.rows/total;
data train;
data test;
train.shallow = test.shallow = 1;
test.X.rows = test.y.rows = end-start;
train.X.rows = train.y.rows = d.X.rows - (end-start);
train.X.cols = test.X.cols = d.X.cols;
train.y.cols = test.y.cols = d.y.cols;
train.X.vals = (float**)calloc(train.X.rows, sizeof(float*));
test.X.vals = (float**)calloc(test.X.rows, sizeof(float*));
train.y.vals = (float**)calloc(train.y.rows, sizeof(float*));
test.y.vals = (float**)calloc(test.y.rows, sizeof(float*));
for(i = 0; i < start; ++i){
train.X.vals[i] = d.X.vals[i];
train.y.vals[i] = d.y.vals[i];
}
for(i = start; i < end; ++i){
test.X.vals[i-start] = d.X.vals[i];
test.y.vals[i-start] = d.y.vals[i];
}
for(i = end; i < d.X.rows; ++i){
train.X.vals[i-(end-start)] = d.X.vals[i];
train.y.vals[i-(end-start)] = d.y.vals[i];
}
split[0] = train;
split[1] = test;
return split;
}