mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.8 KiB
106 lines
3.8 KiB
#include <cuda_runtime.h> |
|
#include <curand.h> |
|
#include <cublas_v2.h> |
|
|
|
#include "convolutional_layer.h" |
|
#include "deconvolutional_layer.h" |
|
#include "gemm.h" |
|
#include "blas.h" |
|
#include "im2col.h" |
|
#include "col2im.h" |
|
#include "utils.h" |
|
#include "dark_cuda.h" |
|
|
|
extern "C" void forward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state) |
|
{ |
|
int i; |
|
int out_h = deconvolutional_out_height(layer); |
|
int out_w = deconvolutional_out_width(layer); |
|
int size = out_h*out_w; |
|
|
|
int m = layer.size*layer.size*layer.n; |
|
int n = layer.h*layer.w; |
|
int k = layer.c; |
|
|
|
fill_ongpu(layer.outputs*layer.batch, 0, layer.output_gpu, 1); |
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
float *a = layer.weights_gpu; |
|
float *b = state.input + i*layer.c*layer.h*layer.w; |
|
float *c = layer.col_image_gpu; |
|
|
|
gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n); |
|
|
|
col2im_ongpu(c, layer.n, out_h, out_w, layer.size, layer.stride, 0, layer.output_gpu+i*layer.n*size); |
|
} |
|
add_bias_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, size); |
|
activate_array(layer.output_gpu, layer.batch*layer.n*size, layer.activation); |
|
} |
|
|
|
extern "C" void backward_deconvolutional_layer_gpu(deconvolutional_layer layer, network_state state) |
|
{ |
|
float alpha = 1./layer.batch; |
|
int out_h = deconvolutional_out_height(layer); |
|
int out_w = deconvolutional_out_width(layer); |
|
int size = out_h*out_w; |
|
int i; |
|
|
|
gradient_array(layer.output_gpu, size*layer.n*layer.batch, layer.activation, layer.delta_gpu); |
|
backward_bias(layer.bias_updates_gpu, layer.delta, layer.batch, layer.n, size); |
|
|
|
if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
|
|
|
for(i = 0; i < layer.batch; ++i){ |
|
int m = layer.c; |
|
int n = layer.size*layer.size*layer.n; |
|
int k = layer.h*layer.w; |
|
|
|
float *a = state.input + i*m*n; |
|
float *b = layer.col_image_gpu; |
|
float *c = layer.weight_updates_gpu; |
|
|
|
im2col_ongpu(layer.delta_gpu + i*layer.n*size, layer.n, out_h, out_w, |
|
layer.size, layer.stride, 0, b); |
|
gemm_ongpu(0,1,m,n,k,alpha,a,k,b,k,1,c,n); |
|
|
|
if(state.delta){ |
|
int m = layer.c; |
|
int n = layer.h*layer.w; |
|
int k = layer.size*layer.size*layer.n; |
|
|
|
float *a = layer.weights_gpu; |
|
float *b = layer.col_image_gpu; |
|
float *c = state.delta + i*n*m; |
|
|
|
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
|
} |
|
} |
|
} |
|
|
|
extern "C" void pull_deconvolutional_layer(deconvolutional_layer layer) |
|
{ |
|
cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); |
|
cuda_pull_array(layer.biases_gpu, layer.biases, layer.n); |
|
cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); |
|
cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
|
} |
|
|
|
extern "C" void push_deconvolutional_layer(deconvolutional_layer layer) |
|
{ |
|
cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); |
|
cuda_push_array(layer.biases_gpu, layer.biases, layer.n); |
|
cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); |
|
cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
|
} |
|
|
|
extern "C" void update_deconvolutional_layer_gpu(deconvolutional_layer layer, int skip, float learning_rate, float momentum, float decay) |
|
{ |
|
int size = layer.size*layer.size*layer.c*layer.n; |
|
|
|
axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
|
scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); |
|
|
|
axpy_ongpu(size, -decay, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
|
axpy_ongpu(size, learning_rate, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
|
scal_ongpu(size, momentum, layer.weight_updates_gpu, 1); |
|
}
|
|
|