mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1592 lines
44 KiB
1592 lines
44 KiB
#include "image.h" |
|
#include "utils.h" |
|
#include "blas.h" |
|
#include "dark_cuda.h" |
|
#include <stdio.h> |
|
#ifndef _USE_MATH_DEFINES |
|
#define _USE_MATH_DEFINES |
|
#endif |
|
#include <math.h> |
|
|
|
#ifndef STB_IMAGE_IMPLEMENTATION |
|
#define STB_IMAGE_IMPLEMENTATION |
|
#include "stb_image.h" |
|
#endif |
|
#ifndef STB_IMAGE_WRITE_IMPLEMENTATION |
|
#define STB_IMAGE_WRITE_IMPLEMENTATION |
|
#include "stb_image_write.h" |
|
#endif |
|
|
|
extern int check_mistakes; |
|
//int windows = 0; |
|
|
|
float colors[6][3] = { {1,0,1}, {0,0,1},{0,1,1},{0,1,0},{1,1,0},{1,0,0} }; |
|
|
|
float get_color(int c, int x, int max) |
|
{ |
|
float ratio = ((float)x/max)*5; |
|
int i = floor(ratio); |
|
int j = ceil(ratio); |
|
ratio -= i; |
|
float r = (1-ratio) * colors[i][c] + ratio*colors[j][c]; |
|
//printf("%f\n", r); |
|
return r; |
|
} |
|
|
|
static float get_pixel(image m, int x, int y, int c) |
|
{ |
|
assert(x < m.w && y < m.h && c < m.c); |
|
return m.data[c*m.h*m.w + y*m.w + x]; |
|
} |
|
static float get_pixel_extend(image m, int x, int y, int c) |
|
{ |
|
if (x < 0 || x >= m.w || y < 0 || y >= m.h) return 0; |
|
/* |
|
if(x < 0) x = 0; |
|
if(x >= m.w) x = m.w-1; |
|
if(y < 0) y = 0; |
|
if(y >= m.h) y = m.h-1; |
|
*/ |
|
if (c < 0 || c >= m.c) return 0; |
|
return get_pixel(m, x, y, c); |
|
} |
|
static void set_pixel(image m, int x, int y, int c, float val) |
|
{ |
|
if (x < 0 || y < 0 || c < 0 || x >= m.w || y >= m.h || c >= m.c) return; |
|
assert(x < m.w && y < m.h && c < m.c); |
|
m.data[c*m.h*m.w + y*m.w + x] = val; |
|
} |
|
static void add_pixel(image m, int x, int y, int c, float val) |
|
{ |
|
assert(x < m.w && y < m.h && c < m.c); |
|
m.data[c*m.h*m.w + y*m.w + x] += val; |
|
} |
|
|
|
void composite_image(image source, image dest, int dx, int dy) |
|
{ |
|
int x,y,k; |
|
for(k = 0; k < source.c; ++k){ |
|
for(y = 0; y < source.h; ++y){ |
|
for(x = 0; x < source.w; ++x){ |
|
float val = get_pixel(source, x, y, k); |
|
float val2 = get_pixel_extend(dest, dx+x, dy+y, k); |
|
set_pixel(dest, dx+x, dy+y, k, val * val2); |
|
} |
|
} |
|
} |
|
} |
|
|
|
image border_image(image a, int border) |
|
{ |
|
image b = make_image(a.w + 2*border, a.h + 2*border, a.c); |
|
int x,y,k; |
|
for(k = 0; k < b.c; ++k){ |
|
for(y = 0; y < b.h; ++y){ |
|
for(x = 0; x < b.w; ++x){ |
|
float val = get_pixel_extend(a, x - border, y - border, k); |
|
if(x - border < 0 || x - border >= a.w || y - border < 0 || y - border >= a.h) val = 1; |
|
set_pixel(b, x, y, k, val); |
|
} |
|
} |
|
} |
|
return b; |
|
} |
|
|
|
image tile_images(image a, image b, int dx) |
|
{ |
|
if(a.w == 0) return copy_image(b); |
|
image c = make_image(a.w + b.w + dx, (a.h > b.h) ? a.h : b.h, (a.c > b.c) ? a.c : b.c); |
|
fill_cpu(c.w*c.h*c.c, 1, c.data, 1); |
|
embed_image(a, c, 0, 0); |
|
composite_image(b, c, a.w + dx, 0); |
|
return c; |
|
} |
|
|
|
image get_label(image **characters, char *string, int size) |
|
{ |
|
if(size > 7) size = 7; |
|
image label = make_empty_image(0,0,0); |
|
while(*string){ |
|
image l = characters[size][(int)*string]; |
|
image n = tile_images(label, l, -size - 1 + (size+1)/2); |
|
free_image(label); |
|
label = n; |
|
++string; |
|
} |
|
image b = border_image(label, label.h*.25); |
|
free_image(label); |
|
return b; |
|
} |
|
|
|
image get_label_v3(image **characters, char *string, int size) |
|
{ |
|
size = size / 10; |
|
if (size > 7) size = 7; |
|
image label = make_empty_image(0, 0, 0); |
|
while (*string) { |
|
image l = characters[size][(int)*string]; |
|
image n = tile_images(label, l, -size - 1 + (size + 1) / 2); |
|
free_image(label); |
|
label = n; |
|
++string; |
|
} |
|
image b = border_image(label, label.h*.25); |
|
free_image(label); |
|
return b; |
|
} |
|
|
|
void draw_label(image a, int r, int c, image label, const float *rgb) |
|
{ |
|
int w = label.w; |
|
int h = label.h; |
|
if (r - h >= 0) r = r - h; |
|
|
|
int i, j, k; |
|
for(j = 0; j < h && j + r < a.h; ++j){ |
|
for(i = 0; i < w && i + c < a.w; ++i){ |
|
for(k = 0; k < label.c; ++k){ |
|
float val = get_pixel(label, i, j, k); |
|
set_pixel(a, i+c, j+r, k, rgb[k] * val); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void draw_box_bw(image a, int x1, int y1, int x2, int y2, float brightness) |
|
{ |
|
//normalize_image(a); |
|
int i; |
|
if (x1 < 0) x1 = 0; |
|
if (x1 >= a.w) x1 = a.w - 1; |
|
if (x2 < 0) x2 = 0; |
|
if (x2 >= a.w) x2 = a.w - 1; |
|
|
|
if (y1 < 0) y1 = 0; |
|
if (y1 >= a.h) y1 = a.h - 1; |
|
if (y2 < 0) y2 = 0; |
|
if (y2 >= a.h) y2 = a.h - 1; |
|
|
|
for (i = x1; i <= x2; ++i) { |
|
a.data[i + y1*a.w + 0 * a.w*a.h] = brightness; |
|
a.data[i + y2*a.w + 0 * a.w*a.h] = brightness; |
|
} |
|
for (i = y1; i <= y2; ++i) { |
|
a.data[x1 + i*a.w + 0 * a.w*a.h] = brightness; |
|
a.data[x2 + i*a.w + 0 * a.w*a.h] = brightness; |
|
} |
|
} |
|
|
|
void draw_box_width_bw(image a, int x1, int y1, int x2, int y2, int w, float brightness) |
|
{ |
|
int i; |
|
for (i = 0; i < w; ++i) { |
|
float alternate_color = (w % 2) ? (brightness) : (1.0 - brightness); |
|
draw_box_bw(a, x1 + i, y1 + i, x2 - i, y2 - i, alternate_color); |
|
} |
|
} |
|
|
|
void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b) |
|
{ |
|
//normalize_image(a); |
|
int i; |
|
if(x1 < 0) x1 = 0; |
|
if(x1 >= a.w) x1 = a.w-1; |
|
if(x2 < 0) x2 = 0; |
|
if(x2 >= a.w) x2 = a.w-1; |
|
|
|
if(y1 < 0) y1 = 0; |
|
if(y1 >= a.h) y1 = a.h-1; |
|
if(y2 < 0) y2 = 0; |
|
if(y2 >= a.h) y2 = a.h-1; |
|
|
|
for(i = x1; i <= x2; ++i){ |
|
a.data[i + y1*a.w + 0*a.w*a.h] = r; |
|
a.data[i + y2*a.w + 0*a.w*a.h] = r; |
|
|
|
a.data[i + y1*a.w + 1*a.w*a.h] = g; |
|
a.data[i + y2*a.w + 1*a.w*a.h] = g; |
|
|
|
a.data[i + y1*a.w + 2*a.w*a.h] = b; |
|
a.data[i + y2*a.w + 2*a.w*a.h] = b; |
|
} |
|
for(i = y1; i <= y2; ++i){ |
|
a.data[x1 + i*a.w + 0*a.w*a.h] = r; |
|
a.data[x2 + i*a.w + 0*a.w*a.h] = r; |
|
|
|
a.data[x1 + i*a.w + 1*a.w*a.h] = g; |
|
a.data[x2 + i*a.w + 1*a.w*a.h] = g; |
|
|
|
a.data[x1 + i*a.w + 2*a.w*a.h] = b; |
|
a.data[x2 + i*a.w + 2*a.w*a.h] = b; |
|
} |
|
} |
|
|
|
void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b) |
|
{ |
|
int i; |
|
for(i = 0; i < w; ++i){ |
|
draw_box(a, x1+i, y1+i, x2-i, y2-i, r, g, b); |
|
} |
|
} |
|
|
|
void draw_bbox(image a, box bbox, int w, float r, float g, float b) |
|
{ |
|
int left = (bbox.x-bbox.w/2)*a.w; |
|
int right = (bbox.x+bbox.w/2)*a.w; |
|
int top = (bbox.y-bbox.h/2)*a.h; |
|
int bot = (bbox.y+bbox.h/2)*a.h; |
|
|
|
int i; |
|
for(i = 0; i < w; ++i){ |
|
draw_box(a, left+i, top+i, right-i, bot-i, r, g, b); |
|
} |
|
} |
|
|
|
image **load_alphabet() |
|
{ |
|
int i, j; |
|
const int nsize = 8; |
|
image** alphabets = (image**)calloc(nsize, sizeof(image*)); |
|
for(j = 0; j < nsize; ++j){ |
|
alphabets[j] = (image*)calloc(128, sizeof(image)); |
|
for(i = 32; i < 127; ++i){ |
|
char buff[256]; |
|
sprintf(buff, "data/labels/%d_%d.png", i, j); |
|
alphabets[j][i] = load_image_color(buff, 0, 0); |
|
} |
|
} |
|
return alphabets; |
|
} |
|
|
|
|
|
|
|
// Creates array of detections with prob > thresh and fills best_class for them |
|
detection_with_class* get_actual_detections(detection *dets, int dets_num, float thresh, int* selected_detections_num, char **names) |
|
{ |
|
int selected_num = 0; |
|
detection_with_class* result_arr = (detection_with_class*)calloc(dets_num, sizeof(detection_with_class)); |
|
int i; |
|
for (i = 0; i < dets_num; ++i) { |
|
int best_class = -1; |
|
float best_class_prob = thresh; |
|
int j; |
|
for (j = 0; j < dets[i].classes; ++j) { |
|
int show = strncmp(names[j], "dont_show", 9); |
|
if (dets[i].prob[j] > best_class_prob && show) { |
|
best_class = j; |
|
best_class_prob = dets[i].prob[j]; |
|
} |
|
} |
|
if (best_class >= 0) { |
|
result_arr[selected_num].det = dets[i]; |
|
result_arr[selected_num].best_class = best_class; |
|
++selected_num; |
|
} |
|
} |
|
if (selected_detections_num) |
|
*selected_detections_num = selected_num; |
|
return result_arr; |
|
} |
|
|
|
// compare to sort detection** by bbox.x |
|
int compare_by_lefts(const void *a_ptr, const void *b_ptr) { |
|
const detection_with_class* a = (detection_with_class*)a_ptr; |
|
const detection_with_class* b = (detection_with_class*)b_ptr; |
|
const float delta = (a->det.bbox.x - a->det.bbox.w/2) - (b->det.bbox.x - b->det.bbox.w/2); |
|
return delta < 0 ? -1 : delta > 0 ? 1 : 0; |
|
} |
|
|
|
// compare to sort detection** by best_class probability |
|
int compare_by_probs(const void *a_ptr, const void *b_ptr) { |
|
const detection_with_class* a = (detection_with_class*)a_ptr; |
|
const detection_with_class* b = (detection_with_class*)b_ptr; |
|
float delta = a->det.prob[a->best_class] - b->det.prob[b->best_class]; |
|
return delta < 0 ? -1 : delta > 0 ? 1 : 0; |
|
} |
|
|
|
void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output) |
|
{ |
|
static int frame_id = 0; |
|
frame_id++; |
|
|
|
int selected_detections_num; |
|
detection_with_class* selected_detections = get_actual_detections(dets, num, thresh, &selected_detections_num, names); |
|
|
|
// text output |
|
qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_lefts); |
|
int i; |
|
for (i = 0; i < selected_detections_num; ++i) { |
|
const int best_class = selected_detections[i].best_class; |
|
printf("%s: %.0f%%", names[best_class], selected_detections[i].det.prob[best_class] * 100); |
|
if (ext_output) |
|
printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n", |
|
round((selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w), |
|
round((selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h), |
|
round(selected_detections[i].det.bbox.w*im.w), round(selected_detections[i].det.bbox.h*im.h)); |
|
else |
|
printf("\n"); |
|
int j; |
|
for (j = 0; j < classes; ++j) { |
|
if (selected_detections[i].det.prob[j] > thresh && j != best_class) { |
|
printf("%s: %.0f%%\n", names[j], selected_detections[i].det.prob[j] * 100); |
|
} |
|
} |
|
} |
|
|
|
// image output |
|
qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_probs); |
|
for (i = 0; i < selected_detections_num; ++i) { |
|
int width = im.h * .006; |
|
if (width < 1) |
|
width = 1; |
|
|
|
/* |
|
if(0){ |
|
width = pow(prob, 1./2.)*10+1; |
|
alphabet = 0; |
|
} |
|
*/ |
|
|
|
//printf("%d %s: %.0f%%\n", i, names[selected_detections[i].best_class], prob*100); |
|
int offset = selected_detections[i].best_class * 123457 % classes; |
|
float red = get_color(2, offset, classes); |
|
float green = get_color(1, offset, classes); |
|
float blue = get_color(0, offset, classes); |
|
float rgb[3]; |
|
|
|
//width = prob*20+2; |
|
|
|
rgb[0] = red; |
|
rgb[1] = green; |
|
rgb[2] = blue; |
|
box b = selected_detections[i].det.bbox; |
|
//printf("%f %f %f %f\n", b.x, b.y, b.w, b.h); |
|
|
|
int left = (b.x - b.w / 2.)*im.w; |
|
int right = (b.x + b.w / 2.)*im.w; |
|
int top = (b.y - b.h / 2.)*im.h; |
|
int bot = (b.y + b.h / 2.)*im.h; |
|
|
|
if (left < 0) left = 0; |
|
if (right > im.w - 1) right = im.w - 1; |
|
if (top < 0) top = 0; |
|
if (bot > im.h - 1) bot = im.h - 1; |
|
|
|
//int b_x_center = (left + right) / 2; |
|
//int b_y_center = (top + bot) / 2; |
|
//int b_width = right - left; |
|
//int b_height = bot - top; |
|
//sprintf(labelstr, "%d x %d - w: %d, h: %d", b_x_center, b_y_center, b_width, b_height); |
|
|
|
// you should create directory: result_img |
|
//static int copied_frame_id = -1; |
|
//static image copy_img; |
|
//if (copied_frame_id != frame_id) { |
|
// copied_frame_id = frame_id; |
|
// if (copy_img.data) free_image(copy_img); |
|
// copy_img = copy_image(im); |
|
//} |
|
//image cropped_im = crop_image(copy_img, left, top, right - left, bot - top); |
|
//static int img_id = 0; |
|
//img_id++; |
|
//char image_name[1024]; |
|
//int best_class_id = selected_detections[i].best_class; |
|
//sprintf(image_name, "result_img/img_%d_%d_%d_%s.jpg", frame_id, img_id, best_class_id, names[best_class_id]); |
|
//save_image(cropped_im, image_name); |
|
//free_image(cropped_im); |
|
|
|
if (im.c == 1) { |
|
draw_box_width_bw(im, left, top, right, bot, width, 0.8); // 1 channel Black-White |
|
} |
|
else { |
|
draw_box_width(im, left, top, right, bot, width, red, green, blue); // 3 channels RGB |
|
} |
|
if (alphabet) { |
|
char labelstr[4096] = { 0 }; |
|
strcat(labelstr, names[selected_detections[i].best_class]); |
|
int j; |
|
for (j = 0; j < classes; ++j) { |
|
if (selected_detections[i].det.prob[j] > thresh && j != selected_detections[i].best_class) { |
|
strcat(labelstr, ", "); |
|
strcat(labelstr, names[j]); |
|
} |
|
} |
|
image label = get_label_v3(alphabet, labelstr, (im.h*.03)); |
|
draw_label(im, top + width, left, label, rgb); |
|
free_image(label); |
|
} |
|
if (selected_detections[i].det.mask) { |
|
image mask = float_to_image(14, 14, 1, selected_detections[i].det.mask); |
|
image resized_mask = resize_image(mask, b.w*im.w, b.h*im.h); |
|
image tmask = threshold_image(resized_mask, .5); |
|
embed_image(tmask, im, left, top); |
|
free_image(mask); |
|
free_image(resized_mask); |
|
free_image(tmask); |
|
} |
|
} |
|
free(selected_detections); |
|
} |
|
|
|
void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes) |
|
{ |
|
int i; |
|
|
|
for(i = 0; i < num; ++i){ |
|
int class_id = max_index(probs[i], classes); |
|
float prob = probs[i][class_id]; |
|
if(prob > thresh){ |
|
|
|
//// for comparison with OpenCV version of DNN Darknet Yolo v2 |
|
//printf("\n %f, %f, %f, %f, ", boxes[i].x, boxes[i].y, boxes[i].w, boxes[i].h); |
|
// int k; |
|
//for (k = 0; k < classes; ++k) { |
|
// printf("%f, ", probs[i][k]); |
|
//} |
|
//printf("\n"); |
|
|
|
int width = im.h * .012; |
|
|
|
if(0){ |
|
width = pow(prob, 1./2.)*10+1; |
|
alphabet = 0; |
|
} |
|
|
|
int offset = class_id*123457 % classes; |
|
float red = get_color(2,offset,classes); |
|
float green = get_color(1,offset,classes); |
|
float blue = get_color(0,offset,classes); |
|
float rgb[3]; |
|
|
|
//width = prob*20+2; |
|
|
|
rgb[0] = red; |
|
rgb[1] = green; |
|
rgb[2] = blue; |
|
box b = boxes[i]; |
|
|
|
int left = (b.x-b.w/2.)*im.w; |
|
int right = (b.x+b.w/2.)*im.w; |
|
int top = (b.y-b.h/2.)*im.h; |
|
int bot = (b.y+b.h/2.)*im.h; |
|
|
|
if(left < 0) left = 0; |
|
if(right > im.w-1) right = im.w-1; |
|
if(top < 0) top = 0; |
|
if(bot > im.h-1) bot = im.h-1; |
|
printf("%s: %.0f%%", names[class_id], prob * 100); |
|
|
|
//printf(" - id: %d, x_center: %d, y_center: %d, width: %d, height: %d", |
|
// class_id, (right + left) / 2, (bot - top) / 2, right - left, bot - top); |
|
|
|
printf("\n"); |
|
draw_box_width(im, left, top, right, bot, width, red, green, blue); |
|
if (alphabet) { |
|
image label = get_label(alphabet, names[class_id], (im.h*.03)/10); |
|
draw_label(im, top + width, left, label, rgb); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void transpose_image(image im) |
|
{ |
|
assert(im.w == im.h); |
|
int n, m; |
|
int c; |
|
for(c = 0; c < im.c; ++c){ |
|
for(n = 0; n < im.w-1; ++n){ |
|
for(m = n + 1; m < im.w; ++m){ |
|
float swap = im.data[m + im.w*(n + im.h*c)]; |
|
im.data[m + im.w*(n + im.h*c)] = im.data[n + im.w*(m + im.h*c)]; |
|
im.data[n + im.w*(m + im.h*c)] = swap; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void rotate_image_cw(image im, int times) |
|
{ |
|
assert(im.w == im.h); |
|
times = (times + 400) % 4; |
|
int i, x, y, c; |
|
int n = im.w; |
|
for(i = 0; i < times; ++i){ |
|
for(c = 0; c < im.c; ++c){ |
|
for(x = 0; x < n/2; ++x){ |
|
for(y = 0; y < (n-1)/2 + 1; ++y){ |
|
float temp = im.data[y + im.w*(x + im.h*c)]; |
|
im.data[y + im.w*(x + im.h*c)] = im.data[n-1-x + im.w*(y + im.h*c)]; |
|
im.data[n-1-x + im.w*(y + im.h*c)] = im.data[n-1-y + im.w*(n-1-x + im.h*c)]; |
|
im.data[n-1-y + im.w*(n-1-x + im.h*c)] = im.data[x + im.w*(n-1-y + im.h*c)]; |
|
im.data[x + im.w*(n-1-y + im.h*c)] = temp; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void flip_image(image a) |
|
{ |
|
int i,j,k; |
|
for(k = 0; k < a.c; ++k){ |
|
for(i = 0; i < a.h; ++i){ |
|
for(j = 0; j < a.w/2; ++j){ |
|
int index = j + a.w*(i + a.h*(k)); |
|
int flip = (a.w - j - 1) + a.w*(i + a.h*(k)); |
|
float swap = a.data[flip]; |
|
a.data[flip] = a.data[index]; |
|
a.data[index] = swap; |
|
} |
|
} |
|
} |
|
} |
|
|
|
image image_distance(image a, image b) |
|
{ |
|
int i,j; |
|
image dist = make_image(a.w, a.h, 1); |
|
for(i = 0; i < a.c; ++i){ |
|
for(j = 0; j < a.h*a.w; ++j){ |
|
dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2); |
|
} |
|
} |
|
for(j = 0; j < a.h*a.w; ++j){ |
|
dist.data[j] = sqrt(dist.data[j]); |
|
} |
|
return dist; |
|
} |
|
|
|
void embed_image(image source, image dest, int dx, int dy) |
|
{ |
|
int x,y,k; |
|
for(k = 0; k < source.c; ++k){ |
|
for(y = 0; y < source.h; ++y){ |
|
for(x = 0; x < source.w; ++x){ |
|
float val = get_pixel(source, x,y,k); |
|
set_pixel(dest, dx+x, dy+y, k, val); |
|
} |
|
} |
|
} |
|
} |
|
|
|
image collapse_image_layers(image source, int border) |
|
{ |
|
int h = source.h; |
|
h = (h+border)*source.c - border; |
|
image dest = make_image(source.w, h, 1); |
|
int i; |
|
for(i = 0; i < source.c; ++i){ |
|
image layer = get_image_layer(source, i); |
|
int h_offset = i*(source.h+border); |
|
embed_image(layer, dest, 0, h_offset); |
|
free_image(layer); |
|
} |
|
return dest; |
|
} |
|
|
|
void constrain_image(image im) |
|
{ |
|
int i; |
|
for(i = 0; i < im.w*im.h*im.c; ++i){ |
|
if(im.data[i] < 0) im.data[i] = 0; |
|
if(im.data[i] > 1) im.data[i] = 1; |
|
} |
|
} |
|
|
|
void normalize_image(image p) |
|
{ |
|
int i; |
|
float min = 9999999; |
|
float max = -999999; |
|
|
|
for(i = 0; i < p.h*p.w*p.c; ++i){ |
|
float v = p.data[i]; |
|
if(v < min) min = v; |
|
if(v > max) max = v; |
|
} |
|
if(max - min < .000000001){ |
|
min = 0; |
|
max = 1; |
|
} |
|
for(i = 0; i < p.c*p.w*p.h; ++i){ |
|
p.data[i] = (p.data[i] - min)/(max-min); |
|
} |
|
} |
|
|
|
void normalize_image2(image p) |
|
{ |
|
float* min = (float*)calloc(p.c, sizeof(float)); |
|
float* max = (float*)calloc(p.c, sizeof(float)); |
|
int i,j; |
|
for(i = 0; i < p.c; ++i) min[i] = max[i] = p.data[i*p.h*p.w]; |
|
|
|
for(j = 0; j < p.c; ++j){ |
|
for(i = 0; i < p.h*p.w; ++i){ |
|
float v = p.data[i+j*p.h*p.w]; |
|
if(v < min[j]) min[j] = v; |
|
if(v > max[j]) max[j] = v; |
|
} |
|
} |
|
for(i = 0; i < p.c; ++i){ |
|
if(max[i] - min[i] < .000000001){ |
|
min[i] = 0; |
|
max[i] = 1; |
|
} |
|
} |
|
for(j = 0; j < p.c; ++j){ |
|
for(i = 0; i < p.w*p.h; ++i){ |
|
p.data[i+j*p.h*p.w] = (p.data[i+j*p.h*p.w] - min[j])/(max[j]-min[j]); |
|
} |
|
} |
|
free(min); |
|
free(max); |
|
} |
|
|
|
image copy_image(image p) |
|
{ |
|
image copy = p; |
|
copy.data = (float*)calloc(p.h * p.w * p.c, sizeof(float)); |
|
memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(float)); |
|
return copy; |
|
} |
|
|
|
void rgbgr_image(image im) |
|
{ |
|
int i; |
|
for(i = 0; i < im.w*im.h; ++i){ |
|
float swap = im.data[i]; |
|
im.data[i] = im.data[i+im.w*im.h*2]; |
|
im.data[i+im.w*im.h*2] = swap; |
|
} |
|
} |
|
|
|
void show_image(image p, const char *name) |
|
{ |
|
#ifdef OPENCV |
|
show_image_cv(p, name); |
|
#else |
|
fprintf(stderr, "Not compiled with OpenCV, saving to %s.png instead\n", name); |
|
save_image(p, name); |
|
#endif // OPENCV |
|
} |
|
|
|
void save_image_png(image im, const char *name) |
|
{ |
|
char buff[256]; |
|
//sprintf(buff, "%s (%d)", name, windows); |
|
sprintf(buff, "%s.png", name); |
|
unsigned char* data = (unsigned char*)calloc(im.w * im.h * im.c, sizeof(unsigned char)); |
|
int i,k; |
|
for(k = 0; k < im.c; ++k){ |
|
for(i = 0; i < im.w*im.h; ++i){ |
|
data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]); |
|
} |
|
} |
|
int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c); |
|
free(data); |
|
if(!success) fprintf(stderr, "Failed to write image %s\n", buff); |
|
} |
|
|
|
void save_image_options(image im, const char *name, IMTYPE f, int quality) |
|
{ |
|
char buff[256]; |
|
//sprintf(buff, "%s (%d)", name, windows); |
|
if (f == PNG) sprintf(buff, "%s.png", name); |
|
else if (f == BMP) sprintf(buff, "%s.bmp", name); |
|
else if (f == TGA) sprintf(buff, "%s.tga", name); |
|
else if (f == JPG) sprintf(buff, "%s.jpg", name); |
|
else sprintf(buff, "%s.png", name); |
|
unsigned char* data = (unsigned char*)calloc(im.w * im.h * im.c, sizeof(unsigned char)); |
|
int i, k; |
|
for (k = 0; k < im.c; ++k) { |
|
for (i = 0; i < im.w*im.h; ++i) { |
|
data[i*im.c + k] = (unsigned char)(255 * im.data[i + k*im.w*im.h]); |
|
} |
|
} |
|
int success = 0; |
|
if (f == PNG) success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c); |
|
else if (f == BMP) success = stbi_write_bmp(buff, im.w, im.h, im.c, data); |
|
else if (f == TGA) success = stbi_write_tga(buff, im.w, im.h, im.c, data); |
|
else if (f == JPG) success = stbi_write_jpg(buff, im.w, im.h, im.c, data, quality); |
|
free(data); |
|
if (!success) fprintf(stderr, "Failed to write image %s\n", buff); |
|
} |
|
|
|
void save_image(image im, const char *name) |
|
{ |
|
save_image_options(im, name, JPG, 80); |
|
} |
|
|
|
void save_image_jpg(image p, const char *name) |
|
{ |
|
save_image_options(p, name, JPG, 80); |
|
} |
|
|
|
void show_image_layers(image p, char *name) |
|
{ |
|
int i; |
|
char buff[256]; |
|
for(i = 0; i < p.c; ++i){ |
|
sprintf(buff, "%s - Layer %d", name, i); |
|
image layer = get_image_layer(p, i); |
|
show_image(layer, buff); |
|
free_image(layer); |
|
} |
|
} |
|
|
|
void show_image_collapsed(image p, char *name) |
|
{ |
|
image c = collapse_image_layers(p, 1); |
|
show_image(c, name); |
|
free_image(c); |
|
} |
|
|
|
image make_empty_image(int w, int h, int c) |
|
{ |
|
image out; |
|
out.data = 0; |
|
out.h = h; |
|
out.w = w; |
|
out.c = c; |
|
return out; |
|
} |
|
|
|
image make_image(int w, int h, int c) |
|
{ |
|
image out = make_empty_image(w,h,c); |
|
out.data = (float*)calloc(h * w * c, sizeof(float)); |
|
return out; |
|
} |
|
|
|
image make_random_image(int w, int h, int c) |
|
{ |
|
image out = make_empty_image(w,h,c); |
|
out.data = (float*)calloc(h * w * c, sizeof(float)); |
|
int i; |
|
for(i = 0; i < w*h*c; ++i){ |
|
out.data[i] = (rand_normal() * .25) + .5; |
|
} |
|
return out; |
|
} |
|
|
|
image float_to_image_scaled(int w, int h, int c, float *data) |
|
{ |
|
image out = make_image(w, h, c); |
|
int abs_max = 0; |
|
int i = 0; |
|
for (i = 0; i < w*h*c; ++i) { |
|
if (fabs(data[i]) > abs_max) abs_max = fabs(data[i]); |
|
} |
|
for (i = 0; i < w*h*c; ++i) { |
|
out.data[i] = data[i] / abs_max; |
|
} |
|
return out; |
|
} |
|
|
|
image float_to_image(int w, int h, int c, float *data) |
|
{ |
|
image out = make_empty_image(w,h,c); |
|
out.data = data; |
|
return out; |
|
} |
|
|
|
|
|
image rotate_crop_image(image im, float rad, float s, int w, int h, float dx, float dy, float aspect) |
|
{ |
|
int x, y, c; |
|
float cx = im.w/2.; |
|
float cy = im.h/2.; |
|
image rot = make_image(w, h, im.c); |
|
for(c = 0; c < im.c; ++c){ |
|
for(y = 0; y < h; ++y){ |
|
for(x = 0; x < w; ++x){ |
|
float rx = cos(rad)*((x - w/2.)/s*aspect + dx/s*aspect) - sin(rad)*((y - h/2.)/s + dy/s) + cx; |
|
float ry = sin(rad)*((x - w/2.)/s*aspect + dx/s*aspect) + cos(rad)*((y - h/2.)/s + dy/s) + cy; |
|
float val = bilinear_interpolate(im, rx, ry, c); |
|
set_pixel(rot, x, y, c, val); |
|
} |
|
} |
|
} |
|
return rot; |
|
} |
|
|
|
image rotate_image(image im, float rad) |
|
{ |
|
int x, y, c; |
|
float cx = im.w/2.; |
|
float cy = im.h/2.; |
|
image rot = make_image(im.w, im.h, im.c); |
|
for(c = 0; c < im.c; ++c){ |
|
for(y = 0; y < im.h; ++y){ |
|
for(x = 0; x < im.w; ++x){ |
|
float rx = cos(rad)*(x-cx) - sin(rad)*(y-cy) + cx; |
|
float ry = sin(rad)*(x-cx) + cos(rad)*(y-cy) + cy; |
|
float val = bilinear_interpolate(im, rx, ry, c); |
|
set_pixel(rot, x, y, c, val); |
|
} |
|
} |
|
} |
|
return rot; |
|
} |
|
|
|
void translate_image(image m, float s) |
|
{ |
|
int i; |
|
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s; |
|
} |
|
|
|
void scale_image(image m, float s) |
|
{ |
|
int i; |
|
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s; |
|
} |
|
|
|
image crop_image(image im, int dx, int dy, int w, int h) |
|
{ |
|
image cropped = make_image(w, h, im.c); |
|
int i, j, k; |
|
for(k = 0; k < im.c; ++k){ |
|
for(j = 0; j < h; ++j){ |
|
for(i = 0; i < w; ++i){ |
|
int r = j + dy; |
|
int c = i + dx; |
|
float val = 0; |
|
r = constrain_int(r, 0, im.h-1); |
|
c = constrain_int(c, 0, im.w-1); |
|
if (r >= 0 && r < im.h && c >= 0 && c < im.w) { |
|
val = get_pixel(im, c, r, k); |
|
} |
|
set_pixel(cropped, i, j, k, val); |
|
} |
|
} |
|
} |
|
return cropped; |
|
} |
|
|
|
int best_3d_shift_r(image a, image b, int min, int max) |
|
{ |
|
if(min == max) return min; |
|
int mid = floor((min + max) / 2.); |
|
image c1 = crop_image(b, 0, mid, b.w, b.h); |
|
image c2 = crop_image(b, 0, mid+1, b.w, b.h); |
|
float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 10); |
|
float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 10); |
|
free_image(c1); |
|
free_image(c2); |
|
if(d1 < d2) return best_3d_shift_r(a, b, min, mid); |
|
else return best_3d_shift_r(a, b, mid+1, max); |
|
} |
|
|
|
int best_3d_shift(image a, image b, int min, int max) |
|
{ |
|
int i; |
|
int best = 0; |
|
float best_distance = FLT_MAX; |
|
for(i = min; i <= max; i += 2){ |
|
image c = crop_image(b, 0, i, b.w, b.h); |
|
float d = dist_array(c.data, a.data, a.w*a.h*a.c, 100); |
|
if(d < best_distance){ |
|
best_distance = d; |
|
best = i; |
|
} |
|
printf("%d %f\n", i, d); |
|
free_image(c); |
|
} |
|
return best; |
|
} |
|
|
|
void composite_3d(char *f1, char *f2, char *out, int delta) |
|
{ |
|
if(!out) out = "out"; |
|
image a = load_image(f1, 0,0,0); |
|
image b = load_image(f2, 0,0,0); |
|
int shift = best_3d_shift_r(a, b, -a.h/100, a.h/100); |
|
|
|
image c1 = crop_image(b, 10, shift, b.w, b.h); |
|
float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 100); |
|
image c2 = crop_image(b, -10, shift, b.w, b.h); |
|
float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 100); |
|
|
|
if(d2 < d1 && 0){ |
|
image swap = a; |
|
a = b; |
|
b = swap; |
|
shift = -shift; |
|
printf("swapped, %d\n", shift); |
|
} |
|
else{ |
|
printf("%d\n", shift); |
|
} |
|
|
|
image c = crop_image(b, delta, shift, a.w, a.h); |
|
int i; |
|
for(i = 0; i < c.w*c.h; ++i){ |
|
c.data[i] = a.data[i]; |
|
} |
|
#ifdef OPENCV |
|
save_image_jpg(c, out); |
|
#else |
|
save_image(c, out); |
|
#endif |
|
} |
|
|
|
void fill_image(image m, float s) |
|
{ |
|
int i; |
|
for (i = 0; i < m.h*m.w*m.c; ++i) m.data[i] = s; |
|
} |
|
|
|
void letterbox_image_into(image im, int w, int h, image boxed) |
|
{ |
|
int new_w = im.w; |
|
int new_h = im.h; |
|
if (((float)w / im.w) < ((float)h / im.h)) { |
|
new_w = w; |
|
new_h = (im.h * w) / im.w; |
|
} |
|
else { |
|
new_h = h; |
|
new_w = (im.w * h) / im.h; |
|
} |
|
image resized = resize_image(im, new_w, new_h); |
|
embed_image(resized, boxed, (w - new_w) / 2, (h - new_h) / 2); |
|
free_image(resized); |
|
} |
|
|
|
image letterbox_image(image im, int w, int h) |
|
{ |
|
int new_w = im.w; |
|
int new_h = im.h; |
|
if (((float)w / im.w) < ((float)h / im.h)) { |
|
new_w = w; |
|
new_h = (im.h * w) / im.w; |
|
} |
|
else { |
|
new_h = h; |
|
new_w = (im.w * h) / im.h; |
|
} |
|
image resized = resize_image(im, new_w, new_h); |
|
image boxed = make_image(w, h, im.c); |
|
fill_image(boxed, .5); |
|
//int i; |
|
//for(i = 0; i < boxed.w*boxed.h*boxed.c; ++i) boxed.data[i] = 0; |
|
embed_image(resized, boxed, (w - new_w) / 2, (h - new_h) / 2); |
|
free_image(resized); |
|
return boxed; |
|
} |
|
|
|
image resize_max(image im, int max) |
|
{ |
|
int w = im.w; |
|
int h = im.h; |
|
if(w > h){ |
|
h = (h * max) / w; |
|
w = max; |
|
} else { |
|
w = (w * max) / h; |
|
h = max; |
|
} |
|
if(w == im.w && h == im.h) return im; |
|
image resized = resize_image(im, w, h); |
|
return resized; |
|
} |
|
|
|
image resize_min(image im, int min) |
|
{ |
|
int w = im.w; |
|
int h = im.h; |
|
if(w < h){ |
|
h = (h * min) / w; |
|
w = min; |
|
} else { |
|
w = (w * min) / h; |
|
h = min; |
|
} |
|
if(w == im.w && h == im.h) return im; |
|
image resized = resize_image(im, w, h); |
|
return resized; |
|
} |
|
|
|
image random_crop_image(image im, int w, int h) |
|
{ |
|
int dx = rand_int(0, im.w - w); |
|
int dy = rand_int(0, im.h - h); |
|
image crop = crop_image(im, dx, dy, w, h); |
|
return crop; |
|
} |
|
|
|
image random_augment_image(image im, float angle, float aspect, int low, int high, int size) |
|
{ |
|
aspect = rand_scale(aspect); |
|
int r = rand_int(low, high); |
|
int min = (im.h < im.w*aspect) ? im.h : im.w*aspect; |
|
float scale = (float)r / min; |
|
|
|
float rad = rand_uniform(-angle, angle) * 2.0 * M_PI / 360.; |
|
|
|
float dx = (im.w*scale/aspect - size) / 2.; |
|
float dy = (im.h*scale - size) / 2.; |
|
if(dx < 0) dx = 0; |
|
if(dy < 0) dy = 0; |
|
dx = rand_uniform(-dx, dx); |
|
dy = rand_uniform(-dy, dy); |
|
|
|
image crop = rotate_crop_image(im, rad, scale, size, size, dx, dy, aspect); |
|
|
|
return crop; |
|
} |
|
|
|
float three_way_max(float a, float b, float c) |
|
{ |
|
return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ; |
|
} |
|
|
|
float three_way_min(float a, float b, float c) |
|
{ |
|
return (a < b) ? ( (a < c) ? a : c) : ( (b < c) ? b : c) ; |
|
} |
|
|
|
// http://www.cs.rit.edu/~ncs/color/t_convert.html |
|
void rgb_to_hsv(image im) |
|
{ |
|
assert(im.c == 3); |
|
int i, j; |
|
float r, g, b; |
|
float h, s, v; |
|
for(j = 0; j < im.h; ++j){ |
|
for(i = 0; i < im.w; ++i){ |
|
r = get_pixel(im, i , j, 0); |
|
g = get_pixel(im, i , j, 1); |
|
b = get_pixel(im, i , j, 2); |
|
float max = three_way_max(r,g,b); |
|
float min = three_way_min(r,g,b); |
|
float delta = max - min; |
|
v = max; |
|
if(max == 0){ |
|
s = 0; |
|
h = 0; |
|
}else{ |
|
s = delta/max; |
|
if(r == max){ |
|
h = (g - b) / delta; |
|
} else if (g == max) { |
|
h = 2 + (b - r) / delta; |
|
} else { |
|
h = 4 + (r - g) / delta; |
|
} |
|
if (h < 0) h += 6; |
|
h = h/6.; |
|
} |
|
set_pixel(im, i, j, 0, h); |
|
set_pixel(im, i, j, 1, s); |
|
set_pixel(im, i, j, 2, v); |
|
} |
|
} |
|
} |
|
|
|
void hsv_to_rgb(image im) |
|
{ |
|
assert(im.c == 3); |
|
int i, j; |
|
float r, g, b; |
|
float h, s, v; |
|
float f, p, q, t; |
|
for(j = 0; j < im.h; ++j){ |
|
for(i = 0; i < im.w; ++i){ |
|
h = 6 * get_pixel(im, i , j, 0); |
|
s = get_pixel(im, i , j, 1); |
|
v = get_pixel(im, i , j, 2); |
|
if (s == 0) { |
|
r = g = b = v; |
|
} else { |
|
int index = floor(h); |
|
f = h - index; |
|
p = v*(1-s); |
|
q = v*(1-s*f); |
|
t = v*(1-s*(1-f)); |
|
if(index == 0){ |
|
r = v; g = t; b = p; |
|
} else if(index == 1){ |
|
r = q; g = v; b = p; |
|
} else if(index == 2){ |
|
r = p; g = v; b = t; |
|
} else if(index == 3){ |
|
r = p; g = q; b = v; |
|
} else if(index == 4){ |
|
r = t; g = p; b = v; |
|
} else { |
|
r = v; g = p; b = q; |
|
} |
|
} |
|
set_pixel(im, i, j, 0, r); |
|
set_pixel(im, i, j, 1, g); |
|
set_pixel(im, i, j, 2, b); |
|
} |
|
} |
|
} |
|
|
|
image grayscale_image(image im) |
|
{ |
|
assert(im.c == 3); |
|
int i, j, k; |
|
image gray = make_image(im.w, im.h, 1); |
|
float scale[] = {0.587, 0.299, 0.114}; |
|
for(k = 0; k < im.c; ++k){ |
|
for(j = 0; j < im.h; ++j){ |
|
for(i = 0; i < im.w; ++i){ |
|
gray.data[i+im.w*j] += scale[k]*get_pixel(im, i, j, k); |
|
} |
|
} |
|
} |
|
return gray; |
|
} |
|
|
|
image threshold_image(image im, float thresh) |
|
{ |
|
int i; |
|
image t = make_image(im.w, im.h, im.c); |
|
for(i = 0; i < im.w*im.h*im.c; ++i){ |
|
t.data[i] = im.data[i]>thresh ? 1 : 0; |
|
} |
|
return t; |
|
} |
|
|
|
image blend_image(image fore, image back, float alpha) |
|
{ |
|
assert(fore.w == back.w && fore.h == back.h && fore.c == back.c); |
|
image blend = make_image(fore.w, fore.h, fore.c); |
|
int i, j, k; |
|
for(k = 0; k < fore.c; ++k){ |
|
for(j = 0; j < fore.h; ++j){ |
|
for(i = 0; i < fore.w; ++i){ |
|
float val = alpha * get_pixel(fore, i, j, k) + |
|
(1 - alpha)* get_pixel(back, i, j, k); |
|
set_pixel(blend, i, j, k, val); |
|
} |
|
} |
|
} |
|
return blend; |
|
} |
|
|
|
void scale_image_channel(image im, int c, float v) |
|
{ |
|
int i, j; |
|
for(j = 0; j < im.h; ++j){ |
|
for(i = 0; i < im.w; ++i){ |
|
float pix = get_pixel(im, i, j, c); |
|
pix = pix*v; |
|
set_pixel(im, i, j, c, pix); |
|
} |
|
} |
|
} |
|
|
|
void translate_image_channel(image im, int c, float v) |
|
{ |
|
int i, j; |
|
for(j = 0; j < im.h; ++j){ |
|
for(i = 0; i < im.w; ++i){ |
|
float pix = get_pixel(im, i, j, c); |
|
pix = pix+v; |
|
set_pixel(im, i, j, c, pix); |
|
} |
|
} |
|
} |
|
|
|
image binarize_image(image im) |
|
{ |
|
image c = copy_image(im); |
|
int i; |
|
for(i = 0; i < im.w * im.h * im.c; ++i){ |
|
if(c.data[i] > .5) c.data[i] = 1; |
|
else c.data[i] = 0; |
|
} |
|
return c; |
|
} |
|
|
|
void saturate_image(image im, float sat) |
|
{ |
|
rgb_to_hsv(im); |
|
scale_image_channel(im, 1, sat); |
|
hsv_to_rgb(im); |
|
constrain_image(im); |
|
} |
|
|
|
void hue_image(image im, float hue) |
|
{ |
|
rgb_to_hsv(im); |
|
int i; |
|
for(i = 0; i < im.w*im.h; ++i){ |
|
im.data[i] = im.data[i] + hue; |
|
if (im.data[i] > 1) im.data[i] -= 1; |
|
if (im.data[i] < 0) im.data[i] += 1; |
|
} |
|
hsv_to_rgb(im); |
|
constrain_image(im); |
|
} |
|
|
|
void exposure_image(image im, float sat) |
|
{ |
|
rgb_to_hsv(im); |
|
scale_image_channel(im, 2, sat); |
|
hsv_to_rgb(im); |
|
constrain_image(im); |
|
} |
|
|
|
void distort_image(image im, float hue, float sat, float val) |
|
{ |
|
if (im.c >= 3) |
|
{ |
|
rgb_to_hsv(im); |
|
scale_image_channel(im, 1, sat); |
|
scale_image_channel(im, 2, val); |
|
int i; |
|
for(i = 0; i < im.w*im.h; ++i){ |
|
im.data[i] = im.data[i] + hue; |
|
if (im.data[i] > 1) im.data[i] -= 1; |
|
if (im.data[i] < 0) im.data[i] += 1; |
|
} |
|
hsv_to_rgb(im); |
|
} |
|
else |
|
{ |
|
scale_image_channel(im, 0, val); |
|
} |
|
constrain_image(im); |
|
} |
|
|
|
void random_distort_image(image im, float hue, float saturation, float exposure) |
|
{ |
|
float dhue = rand_uniform_strong(-hue, hue); |
|
float dsat = rand_scale(saturation); |
|
float dexp = rand_scale(exposure); |
|
distort_image(im, dhue, dsat, dexp); |
|
} |
|
|
|
void saturate_exposure_image(image im, float sat, float exposure) |
|
{ |
|
rgb_to_hsv(im); |
|
scale_image_channel(im, 1, sat); |
|
scale_image_channel(im, 2, exposure); |
|
hsv_to_rgb(im); |
|
constrain_image(im); |
|
} |
|
|
|
float bilinear_interpolate(image im, float x, float y, int c) |
|
{ |
|
int ix = (int) floorf(x); |
|
int iy = (int) floorf(y); |
|
|
|
float dx = x - ix; |
|
float dy = y - iy; |
|
|
|
float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + |
|
dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + |
|
(1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) + |
|
dy * dx * get_pixel_extend(im, ix+1, iy+1, c); |
|
return val; |
|
} |
|
|
|
image resize_image(image im, int w, int h) |
|
{ |
|
if (im.w == w && im.h == h) return copy_image(im); |
|
|
|
image resized = make_image(w, h, im.c); |
|
image part = make_image(w, im.h, im.c); |
|
int r, c, k; |
|
float w_scale = (float)(im.w - 1) / (w - 1); |
|
float h_scale = (float)(im.h - 1) / (h - 1); |
|
for(k = 0; k < im.c; ++k){ |
|
for(r = 0; r < im.h; ++r){ |
|
for(c = 0; c < w; ++c){ |
|
float val = 0; |
|
if(c == w-1 || im.w == 1){ |
|
val = get_pixel(im, im.w-1, r, k); |
|
} else { |
|
float sx = c*w_scale; |
|
int ix = (int) sx; |
|
float dx = sx - ix; |
|
val = (1 - dx) * get_pixel(im, ix, r, k) + dx * get_pixel(im, ix+1, r, k); |
|
} |
|
set_pixel(part, c, r, k, val); |
|
} |
|
} |
|
} |
|
for(k = 0; k < im.c; ++k){ |
|
for(r = 0; r < h; ++r){ |
|
float sy = r*h_scale; |
|
int iy = (int) sy; |
|
float dy = sy - iy; |
|
for(c = 0; c < w; ++c){ |
|
float val = (1-dy) * get_pixel(part, c, iy, k); |
|
set_pixel(resized, c, r, k, val); |
|
} |
|
if(r == h-1 || im.h == 1) continue; |
|
for(c = 0; c < w; ++c){ |
|
float val = dy * get_pixel(part, c, iy+1, k); |
|
add_pixel(resized, c, r, k, val); |
|
} |
|
} |
|
} |
|
|
|
free_image(part); |
|
return resized; |
|
} |
|
|
|
|
|
void test_resize(char *filename) |
|
{ |
|
image im = load_image(filename, 0,0, 3); |
|
float mag = mag_array(im.data, im.w*im.h*im.c); |
|
printf("L2 Norm: %f\n", mag); |
|
image gray = grayscale_image(im); |
|
|
|
image c1 = copy_image(im); |
|
image c2 = copy_image(im); |
|
image c3 = copy_image(im); |
|
image c4 = copy_image(im); |
|
distort_image(c1, .1, 1.5, 1.5); |
|
distort_image(c2, -.1, .66666, .66666); |
|
distort_image(c3, .1, 1.5, .66666); |
|
distort_image(c4, .1, .66666, 1.5); |
|
|
|
|
|
show_image(im, "Original"); |
|
show_image(gray, "Gray"); |
|
show_image(c1, "C1"); |
|
show_image(c2, "C2"); |
|
show_image(c3, "C3"); |
|
show_image(c4, "C4"); |
|
|
|
#ifdef OPENCV |
|
while(1){ |
|
image aug = random_augment_image(im, 0, .75, 320, 448, 320); |
|
show_image(aug, "aug"); |
|
free_image(aug); |
|
|
|
|
|
float exposure = 1.15; |
|
float saturation = 1.15; |
|
float hue = .05; |
|
|
|
image c = copy_image(im); |
|
|
|
float dexp = rand_scale(exposure); |
|
float dsat = rand_scale(saturation); |
|
float dhue = rand_uniform(-hue, hue); |
|
|
|
distort_image(c, dhue, dsat, dexp); |
|
show_image(c, "rand"); |
|
printf("%f %f %f\n", dhue, dsat, dexp); |
|
free_image(c); |
|
wait_until_press_key_cv(); |
|
} |
|
#endif |
|
} |
|
|
|
|
|
image load_image_stb(char *filename, int channels) |
|
{ |
|
int w, h, c; |
|
unsigned char *data = stbi_load(filename, &w, &h, &c, channels); |
|
if (!data) { |
|
char shrinked_filename[1024]; |
|
if (strlen(filename) >= 1024) sprintf(shrinked_filename, "name is too long"); |
|
else sprintf(shrinked_filename, "%s", filename); |
|
fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", shrinked_filename, stbi_failure_reason()); |
|
FILE* fw = fopen("bad.list", "a"); |
|
fwrite(shrinked_filename, sizeof(char), strlen(shrinked_filename), fw); |
|
char *new_line = "\n"; |
|
fwrite(new_line, sizeof(char), strlen(new_line), fw); |
|
fclose(fw); |
|
if (check_mistakes) getchar(); |
|
return make_image(10, 10, 3); |
|
//exit(EXIT_FAILURE); |
|
} |
|
if(channels) c = channels; |
|
int i,j,k; |
|
image im = make_image(w, h, c); |
|
for(k = 0; k < c; ++k){ |
|
for(j = 0; j < h; ++j){ |
|
for(i = 0; i < w; ++i){ |
|
int dst_index = i + w*j + w*h*k; |
|
int src_index = k + c*i + c*w*j; |
|
im.data[dst_index] = (float)data[src_index]/255.; |
|
} |
|
} |
|
} |
|
free(data); |
|
return im; |
|
} |
|
|
|
image load_image(char *filename, int w, int h, int c) |
|
{ |
|
#ifdef OPENCV |
|
//image out = load_image_stb(filename, c); |
|
image out = load_image_cv(filename, c); |
|
#else |
|
image out = load_image_stb(filename, c); // without OpenCV |
|
#endif // OPENCV |
|
|
|
if((h && w) && (h != out.h || w != out.w)){ |
|
image resized = resize_image(out, w, h); |
|
free_image(out); |
|
out = resized; |
|
} |
|
return out; |
|
} |
|
|
|
image load_image_color(char *filename, int w, int h) |
|
{ |
|
return load_image(filename, w, h, 3); |
|
} |
|
|
|
image get_image_layer(image m, int l) |
|
{ |
|
image out = make_image(m.w, m.h, 1); |
|
int i; |
|
for(i = 0; i < m.h*m.w; ++i){ |
|
out.data[i] = m.data[i+l*m.h*m.w]; |
|
} |
|
return out; |
|
} |
|
|
|
void print_image(image m) |
|
{ |
|
int i, j, k; |
|
for(i =0 ; i < m.c; ++i){ |
|
for(j =0 ; j < m.h; ++j){ |
|
for(k = 0; k < m.w; ++k){ |
|
printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]); |
|
if(k > 30) break; |
|
} |
|
printf("\n"); |
|
if(j > 30) break; |
|
} |
|
printf("\n"); |
|
} |
|
printf("\n"); |
|
} |
|
|
|
image collapse_images_vert(image *ims, int n) |
|
{ |
|
int color = 1; |
|
int border = 1; |
|
int h,w,c; |
|
w = ims[0].w; |
|
h = (ims[0].h + border) * n - border; |
|
c = ims[0].c; |
|
if(c != 3 || !color){ |
|
w = (w+border)*c - border; |
|
c = 1; |
|
} |
|
|
|
image filters = make_image(w, h, c); |
|
int i,j; |
|
for(i = 0; i < n; ++i){ |
|
int h_offset = i*(ims[0].h+border); |
|
image copy = copy_image(ims[i]); |
|
//normalize_image(copy); |
|
if(c == 3 && color){ |
|
embed_image(copy, filters, 0, h_offset); |
|
} |
|
else{ |
|
for(j = 0; j < copy.c; ++j){ |
|
int w_offset = j*(ims[0].w+border); |
|
image layer = get_image_layer(copy, j); |
|
embed_image(layer, filters, w_offset, h_offset); |
|
free_image(layer); |
|
} |
|
} |
|
free_image(copy); |
|
} |
|
return filters; |
|
} |
|
|
|
image collapse_images_horz(image *ims, int n) |
|
{ |
|
int color = 1; |
|
int border = 1; |
|
int h,w,c; |
|
int size = ims[0].h; |
|
h = size; |
|
w = (ims[0].w + border) * n - border; |
|
c = ims[0].c; |
|
if(c != 3 || !color){ |
|
h = (h+border)*c - border; |
|
c = 1; |
|
} |
|
|
|
image filters = make_image(w, h, c); |
|
int i,j; |
|
for(i = 0; i < n; ++i){ |
|
int w_offset = i*(size+border); |
|
image copy = copy_image(ims[i]); |
|
//normalize_image(copy); |
|
if(c == 3 && color){ |
|
embed_image(copy, filters, w_offset, 0); |
|
} |
|
else{ |
|
for(j = 0; j < copy.c; ++j){ |
|
int h_offset = j*(size+border); |
|
image layer = get_image_layer(copy, j); |
|
embed_image(layer, filters, w_offset, h_offset); |
|
free_image(layer); |
|
} |
|
} |
|
free_image(copy); |
|
} |
|
return filters; |
|
} |
|
|
|
void show_image_normalized(image im, const char *name) |
|
{ |
|
image c = copy_image(im); |
|
normalize_image(c); |
|
show_image(c, name); |
|
free_image(c); |
|
} |
|
|
|
void show_images(image *ims, int n, char *window) |
|
{ |
|
image m = collapse_images_vert(ims, n); |
|
/* |
|
int w = 448; |
|
int h = ((float)m.h/m.w) * 448; |
|
if(h > 896){ |
|
h = 896; |
|
w = ((float)m.w/m.h) * 896; |
|
} |
|
image sized = resize_image(m, w, h); |
|
*/ |
|
normalize_image(m); |
|
save_image(m, window); |
|
show_image(m, window); |
|
free_image(m); |
|
} |
|
|
|
void free_image(image m) |
|
{ |
|
if(m.data){ |
|
free(m.data); |
|
} |
|
} |
|
|
|
// Fast copy data from a contiguous byte array into the image. |
|
LIB_API void copy_image_from_bytes(image im, char *pdata) |
|
{ |
|
unsigned char *data = (unsigned char*)pdata; |
|
int i, k, j; |
|
int w = im.w; |
|
int h = im.h; |
|
int c = im.c; |
|
for (k = 0; k < c; ++k) { |
|
for (j = 0; j < h; ++j) { |
|
for (i = 0; i < w; ++i) { |
|
int dst_index = i + w * j + w * h*k; |
|
int src_index = k + c * i + c * w*j; |
|
im.data[dst_index] = (float)data[src_index] / 255.; |
|
} |
|
} |
|
} |
|
}
|
|
|