mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
8.8 KiB
283 lines
8.8 KiB
#include "local_layer.h" |
|
#include "utils.h" |
|
#include "im2col.h" |
|
#include "col2im.h" |
|
#include "blas.h" |
|
#include "gemm.h" |
|
#include <stdio.h> |
|
#include <time.h> |
|
|
|
int local_out_height(local_layer l) |
|
{ |
|
int h = l.h; |
|
if (!l.pad) h -= l.size; |
|
else h -= 1; |
|
return h/l.stride + 1; |
|
} |
|
|
|
int local_out_width(local_layer l) |
|
{ |
|
int w = l.w; |
|
if (!l.pad) w -= l.size; |
|
else w -= 1; |
|
return w/l.stride + 1; |
|
} |
|
|
|
local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation) |
|
{ |
|
int i; |
|
local_layer l = { (LAYER_TYPE)0 }; |
|
l.type = LOCAL; |
|
|
|
l.h = h; |
|
l.w = w; |
|
l.c = c; |
|
l.n = n; |
|
l.batch = batch; |
|
l.stride = stride; |
|
l.size = size; |
|
l.pad = pad; |
|
|
|
int out_h = local_out_height(l); |
|
int out_w = local_out_width(l); |
|
int locations = out_h*out_w; |
|
l.out_h = out_h; |
|
l.out_w = out_w; |
|
l.out_c = n; |
|
l.outputs = l.out_h * l.out_w * l.out_c; |
|
l.inputs = l.w * l.h * l.c; |
|
|
|
l.weights = (float*)calloc(c * n * size * size * locations, sizeof(float)); |
|
l.weight_updates = (float*)calloc(c * n * size * size * locations, sizeof(float)); |
|
|
|
l.biases = (float*)calloc(l.outputs, sizeof(float)); |
|
l.bias_updates = (float*)calloc(l.outputs, sizeof(float)); |
|
|
|
// float scale = 1./sqrt(size*size*c); |
|
float scale = sqrt(2./(size*size*c)); |
|
for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1,1); |
|
|
|
l.col_image = (float*)calloc(out_h * out_w * size * size * c, sizeof(float)); |
|
l.output = (float*)calloc(l.batch * out_h * out_w * n, sizeof(float)); |
|
l.delta = (float*)calloc(l.batch * out_h * out_w * n, sizeof(float)); |
|
|
|
l.forward = forward_local_layer; |
|
l.backward = backward_local_layer; |
|
l.update = update_local_layer; |
|
|
|
#ifdef GPU |
|
l.forward_gpu = forward_local_layer_gpu; |
|
l.backward_gpu = backward_local_layer_gpu; |
|
l.update_gpu = update_local_layer_gpu; |
|
|
|
l.weights_gpu = cuda_make_array(l.weights, c*n*size*size*locations); |
|
l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size*locations); |
|
|
|
l.biases_gpu = cuda_make_array(l.biases, l.outputs); |
|
l.bias_updates_gpu = cuda_make_array(l.bias_updates, l.outputs); |
|
|
|
l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c); |
|
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); |
|
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
|
|
|
#endif |
|
l.activation = activation; |
|
|
|
fprintf(stderr, "Local Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
|
|
|
return l; |
|
} |
|
|
|
void forward_local_layer(const local_layer l, network_state state) |
|
{ |
|
int out_h = local_out_height(l); |
|
int out_w = local_out_width(l); |
|
int i, j; |
|
int locations = out_h * out_w; |
|
|
|
for(i = 0; i < l.batch; ++i){ |
|
copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1); |
|
} |
|
|
|
for(i = 0; i < l.batch; ++i){ |
|
float *input = state.input + i*l.w*l.h*l.c; |
|
im2col_cpu(input, l.c, l.h, l.w, |
|
l.size, l.stride, l.pad, l.col_image); |
|
float *output = l.output + i*l.outputs; |
|
for(j = 0; j < locations; ++j){ |
|
float *a = l.weights + j*l.size*l.size*l.c*l.n; |
|
float *b = l.col_image + j; |
|
float *c = output + j; |
|
|
|
int m = l.n; |
|
int n = 1; |
|
int k = l.size*l.size*l.c; |
|
|
|
gemm(0,0,m,n,k,1,a,k,b,locations,1,c,locations); |
|
} |
|
} |
|
activate_array(l.output, l.outputs*l.batch, l.activation); |
|
} |
|
|
|
void backward_local_layer(local_layer l, network_state state) |
|
{ |
|
int i, j; |
|
int locations = l.out_w*l.out_h; |
|
|
|
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); |
|
|
|
for(i = 0; i < l.batch; ++i){ |
|
axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1); |
|
} |
|
|
|
for(i = 0; i < l.batch; ++i){ |
|
float *input = state.input + i*l.w*l.h*l.c; |
|
im2col_cpu(input, l.c, l.h, l.w, |
|
l.size, l.stride, l.pad, l.col_image); |
|
|
|
for(j = 0; j < locations; ++j){ |
|
float *a = l.delta + i*l.outputs + j; |
|
float *b = l.col_image + j; |
|
float *c = l.weight_updates + j*l.size*l.size*l.c*l.n; |
|
int m = l.n; |
|
int n = l.size*l.size*l.c; |
|
int k = 1; |
|
|
|
gemm(0,1,m,n,k,1,a,locations,b,locations,1,c,n); |
|
} |
|
|
|
if(state.delta){ |
|
for(j = 0; j < locations; ++j){ |
|
float *a = l.weights + j*l.size*l.size*l.c*l.n; |
|
float *b = l.delta + i*l.outputs + j; |
|
float *c = l.col_image + j; |
|
|
|
int m = l.size*l.size*l.c; |
|
int n = 1; |
|
int k = l.n; |
|
|
|
gemm(1,0,m,n,k,1,a,m,b,locations,0,c,locations); |
|
} |
|
|
|
col2im_cpu(l.col_image, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w); |
|
} |
|
} |
|
} |
|
|
|
void update_local_layer(local_layer l, int batch, float learning_rate, float momentum, float decay) |
|
{ |
|
int locations = l.out_w*l.out_h; |
|
int size = l.size*l.size*l.c*l.n*locations; |
|
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1); |
|
scal_cpu(l.outputs, momentum, l.bias_updates, 1); |
|
|
|
axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1); |
|
axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1); |
|
scal_cpu(size, momentum, l.weight_updates, 1); |
|
} |
|
|
|
#ifdef GPU |
|
|
|
void forward_local_layer_gpu(const local_layer l, network_state state) |
|
{ |
|
int out_h = local_out_height(l); |
|
int out_w = local_out_width(l); |
|
int i, j; |
|
int locations = out_h * out_w; |
|
|
|
for(i = 0; i < l.batch; ++i){ |
|
copy_ongpu(l.outputs, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1); |
|
} |
|
|
|
for(i = 0; i < l.batch; ++i){ |
|
float *input = state.input + i*l.w*l.h*l.c; |
|
im2col_ongpu(input, l.c, l.h, l.w, |
|
l.size, l.stride, l.pad, l.col_image_gpu); |
|
float *output = l.output_gpu + i*l.outputs; |
|
for(j = 0; j < locations; ++j){ |
|
float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n; |
|
float *b = l.col_image_gpu + j; |
|
float *c = output + j; |
|
|
|
int m = l.n; |
|
int n = 1; |
|
int k = l.size*l.size*l.c; |
|
|
|
gemm_ongpu(0,0,m,n,k,1,a,k,b,locations,1,c,locations); |
|
} |
|
} |
|
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
|
} |
|
|
|
void backward_local_layer_gpu(local_layer l, network_state state) |
|
{ |
|
int i, j; |
|
int locations = l.out_w*l.out_h; |
|
|
|
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
|
for(i = 0; i < l.batch; ++i){ |
|
axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1); |
|
} |
|
|
|
for(i = 0; i < l.batch; ++i){ |
|
float *input = state.input + i*l.w*l.h*l.c; |
|
im2col_ongpu(input, l.c, l.h, l.w, |
|
l.size, l.stride, l.pad, l.col_image_gpu); |
|
|
|
for(j = 0; j < locations; ++j){ |
|
float *a = l.delta_gpu + i*l.outputs + j; |
|
float *b = l.col_image_gpu + j; |
|
float *c = l.weight_updates_gpu + j*l.size*l.size*l.c*l.n; |
|
int m = l.n; |
|
int n = l.size*l.size*l.c; |
|
int k = 1; |
|
|
|
gemm_ongpu(0,1,m,n,k,1,a,locations,b,locations,1,c,n); |
|
} |
|
|
|
if(state.delta){ |
|
for(j = 0; j < locations; ++j){ |
|
float *a = l.weights_gpu + j*l.size*l.size*l.c*l.n; |
|
float *b = l.delta_gpu + i*l.outputs + j; |
|
float *c = l.col_image_gpu + j; |
|
|
|
int m = l.size*l.size*l.c; |
|
int n = 1; |
|
int k = l.n; |
|
|
|
gemm_ongpu(1,0,m,n,k,1,a,m,b,locations,0,c,locations); |
|
} |
|
|
|
col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w); |
|
} |
|
} |
|
} |
|
|
|
void update_local_layer_gpu(local_layer l, int batch, float learning_rate, float momentum, float decay) |
|
{ |
|
int locations = l.out_w*l.out_h; |
|
int size = l.size*l.size*l.c*l.n*locations; |
|
axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); |
|
scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1); |
|
|
|
axpy_ongpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); |
|
axpy_ongpu(size, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); |
|
scal_ongpu(size, momentum, l.weight_updates_gpu, 1); |
|
} |
|
|
|
void pull_local_layer(local_layer l) |
|
{ |
|
int locations = l.out_w*l.out_h; |
|
int size = l.size*l.size*l.c*l.n*locations; |
|
cuda_pull_array(l.weights_gpu, l.weights, size); |
|
cuda_pull_array(l.biases_gpu, l.biases, l.outputs); |
|
} |
|
|
|
void push_local_layer(local_layer l) |
|
{ |
|
int locations = l.out_w*l.out_h; |
|
int size = l.size*l.size*l.c*l.n*locations; |
|
cuda_push_array(l.weights_gpu, l.weights, size); |
|
cuda_push_array(l.biases_gpu, l.biases, l.outputs); |
|
} |
|
#endif
|
|
|