mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
442 lines
13 KiB
442 lines
13 KiB
#include <stdio.h> |
|
#include "network.h" |
|
#include "image.h" |
|
#include "data.h" |
|
#include "utils.h" |
|
|
|
#include "connected_layer.h" |
|
#include "convolutional_layer.h" |
|
//#include "old_conv.h" |
|
#include "maxpool_layer.h" |
|
#include "softmax_layer.h" |
|
|
|
network make_network(int n) |
|
{ |
|
network net; |
|
net.n = n; |
|
net.layers = calloc(net.n, sizeof(void *)); |
|
net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
|
net.outputs = 0; |
|
net.output = 0; |
|
return net; |
|
} |
|
|
|
void print_convolutional_cfg(FILE *fp, convolutional_layer *l) |
|
{ |
|
int i; |
|
fprintf(fp, "[convolutional]\n" |
|
"height=%d\n" |
|
"width=%d\n" |
|
"channels=%d\n" |
|
"filters=%d\n" |
|
"size=%d\n" |
|
"stride=%d\n" |
|
"activation=%s\n", |
|
l->h, l->w, l->c, |
|
l->n, l->size, l->stride, |
|
get_activation_string(l->activation)); |
|
fprintf(fp, "data="); |
|
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
|
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
|
fprintf(fp, "\n\n"); |
|
} |
|
void print_connected_cfg(FILE *fp, connected_layer *l) |
|
{ |
|
int i; |
|
fprintf(fp, "[connected]\n" |
|
"input=%d\n" |
|
"output=%d\n" |
|
"activation=%s\n", |
|
l->inputs, l->outputs, |
|
get_activation_string(l->activation)); |
|
fprintf(fp, "data="); |
|
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); |
|
for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]); |
|
fprintf(fp, "\n\n"); |
|
} |
|
|
|
void print_maxpool_cfg(FILE *fp, maxpool_layer *l) |
|
{ |
|
fprintf(fp, "[maxpool]\n" |
|
"height=%d\n" |
|
"width=%d\n" |
|
"channels=%d\n" |
|
"stride=%d\n\n", |
|
l->h, l->w, l->c, |
|
l->stride); |
|
} |
|
|
|
void print_softmax_cfg(FILE *fp, softmax_layer *l) |
|
{ |
|
fprintf(fp, "[softmax]\n" |
|
"input=%d\n\n", |
|
l->inputs); |
|
} |
|
|
|
void save_network(network net, char *filename) |
|
{ |
|
FILE *fp = fopen(filename, "w"); |
|
if(!fp) file_error(filename); |
|
int i; |
|
for(i = 0; i < net.n; ++i) |
|
{ |
|
if(net.types[i] == CONVOLUTIONAL) |
|
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i]); |
|
else if(net.types[i] == CONNECTED) |
|
print_connected_cfg(fp, (connected_layer *)net.layers[i]); |
|
else if(net.types[i] == MAXPOOL) |
|
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i]); |
|
else if(net.types[i] == SOFTMAX) |
|
print_softmax_cfg(fp, (softmax_layer *)net.layers[i]); |
|
} |
|
fclose(fp); |
|
} |
|
|
|
void forward_network(network net, float *input) |
|
{ |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
forward_convolutional_layer(layer, input); |
|
input = layer.output; |
|
} |
|
else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
forward_connected_layer(layer, input); |
|
input = layer.output; |
|
} |
|
else if(net.types[i] == SOFTMAX){ |
|
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
|
forward_softmax_layer(layer, input); |
|
input = layer.output; |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
forward_maxpool_layer(layer, input); |
|
input = layer.output; |
|
} |
|
} |
|
} |
|
|
|
void update_network(network net, float step, float momentum, float decay) |
|
{ |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
update_convolutional_layer(layer, step, momentum, decay); |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
} |
|
else if(net.types[i] == SOFTMAX){ |
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
} |
|
else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
update_connected_layer(layer, step, momentum, decay); |
|
} |
|
} |
|
} |
|
|
|
float *get_network_output_layer(network net, int i) |
|
{ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
return layer.output; |
|
} else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
return layer.output; |
|
} else if(net.types[i] == SOFTMAX){ |
|
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
|
return layer.output; |
|
} else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
return layer.output; |
|
} |
|
return 0; |
|
} |
|
float *get_network_output(network net) |
|
{ |
|
return get_network_output_layer(net, net.n-1); |
|
} |
|
|
|
float *get_network_delta_layer(network net, int i) |
|
{ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
return layer.delta; |
|
} else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
return layer.delta; |
|
} else if(net.types[i] == SOFTMAX){ |
|
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
|
return layer.delta; |
|
} else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
return layer.delta; |
|
} |
|
return 0; |
|
} |
|
|
|
float *get_network_delta(network net) |
|
{ |
|
return get_network_delta_layer(net, net.n-1); |
|
} |
|
|
|
float calculate_error_network(network net, float *truth) |
|
{ |
|
float sum = 0; |
|
float *delta = get_network_delta(net); |
|
float *out = get_network_output(net); |
|
int i, k = get_network_output_size(net); |
|
for(i = 0; i < k; ++i){ |
|
printf("%f, ", out[i]); |
|
delta[i] = truth[i] - out[i]; |
|
sum += delta[i]*delta[i]; |
|
} |
|
printf("\n"); |
|
return sum; |
|
} |
|
|
|
int get_predicted_class_network(network net) |
|
{ |
|
float *out = get_network_output(net); |
|
int k = get_network_output_size(net); |
|
return max_index(out, k); |
|
} |
|
|
|
float backward_network(network net, float *input, float *truth) |
|
{ |
|
float error = calculate_error_network(net, truth); |
|
int i; |
|
float *prev_input; |
|
float *prev_delta; |
|
for(i = net.n-1; i >= 0; --i){ |
|
if(i == 0){ |
|
prev_input = input; |
|
prev_delta = 0; |
|
}else{ |
|
prev_input = get_network_output_layer(net, i-1); |
|
prev_delta = get_network_delta_layer(net, i-1); |
|
} |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
learn_convolutional_layer(layer); |
|
//learn_convolutional_layer(layer); |
|
if(i != 0) backward_convolutional_layer(layer, prev_delta); |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta); |
|
} |
|
else if(net.types[i] == SOFTMAX){ |
|
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
|
if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta); |
|
} |
|
else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
learn_connected_layer(layer, prev_input); |
|
if(i != 0) backward_connected_layer(layer, prev_input, prev_delta); |
|
} |
|
} |
|
return error; |
|
} |
|
|
|
float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay) |
|
{ |
|
forward_network(net, x); |
|
//int class = get_predicted_class_network(net); |
|
float error = backward_network(net, x, y); |
|
update_network(net, step, momentum, decay); |
|
//return (y[class]?1:0); |
|
return error; |
|
} |
|
|
|
float train_network_sgd(network net, data d, int n, float step, float momentum,float decay) |
|
{ |
|
int i; |
|
float error = 0; |
|
int correct = 0; |
|
for(i = 0; i < n; ++i){ |
|
int index = rand()%d.X.rows; |
|
error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay); |
|
float *y = d.y.vals[index]; |
|
int class = get_predicted_class_network(net); |
|
correct += (y[class]?1:0); |
|
//printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]); |
|
//if((i+1)%10 == 0){ |
|
// printf("%d: %f\n", (i+1), (float)correct/(i+1)); |
|
//} |
|
} |
|
printf("Accuracy: %f\n",(float) correct/n); |
|
return error/n; |
|
} |
|
float train_network_batch(network net, data d, int n, float step, float momentum,float decay) |
|
{ |
|
int i; |
|
int correct = 0; |
|
for(i = 0; i < n; ++i){ |
|
int index = rand()%d.X.rows; |
|
float *x = d.X.vals[index]; |
|
float *y = d.y.vals[index]; |
|
forward_network(net, x); |
|
int class = get_predicted_class_network(net); |
|
backward_network(net, x, y); |
|
correct += (y[class]?1:0); |
|
} |
|
update_network(net, step, momentum, decay); |
|
return (float)correct/n; |
|
|
|
} |
|
|
|
|
|
void train_network(network net, data d, float step, float momentum, float decay) |
|
{ |
|
int i; |
|
int correct = 0; |
|
for(i = 0; i < d.X.rows; ++i){ |
|
correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay); |
|
if(i%100 == 0){ |
|
visualize_network(net); |
|
cvWaitKey(10); |
|
} |
|
} |
|
visualize_network(net); |
|
cvWaitKey(100); |
|
printf("Accuracy: %f\n", (float)correct/d.X.rows); |
|
} |
|
|
|
int get_network_output_size_layer(network net, int i) |
|
{ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
image output = get_convolutional_image(layer); |
|
return output.h*output.w*output.c; |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
image output = get_maxpool_image(layer); |
|
return output.h*output.w*output.c; |
|
} |
|
else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
return layer.outputs; |
|
} |
|
else if(net.types[i] == SOFTMAX){ |
|
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
|
return layer.inputs; |
|
} |
|
return 0; |
|
} |
|
|
|
int get_network_output_size(network net) |
|
{ |
|
int i = net.n-1; |
|
return get_network_output_size_layer(net, i); |
|
} |
|
|
|
image get_network_image_layer(network net, int i) |
|
{ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
return get_convolutional_image(layer); |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
return get_maxpool_image(layer); |
|
} |
|
return make_empty_image(0,0,0); |
|
} |
|
|
|
image get_network_image(network net) |
|
{ |
|
int i; |
|
for(i = net.n-1; i >= 0; --i){ |
|
image m = get_network_image_layer(net, i); |
|
if(m.h != 0) return m; |
|
} |
|
return make_empty_image(0,0,0); |
|
} |
|
|
|
void visualize_network(network net) |
|
{ |
|
int i; |
|
char buff[256]; |
|
for(i = 0; i < net.n; ++i){ |
|
sprintf(buff, "Layer %d", i); |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
visualize_convolutional_layer(layer, buff); |
|
} |
|
} |
|
} |
|
|
|
float *network_predict(network net, float *input) |
|
{ |
|
forward_network(net, input); |
|
float *out = get_network_output(net); |
|
return out; |
|
} |
|
|
|
matrix network_predict_data(network net, data test) |
|
{ |
|
int i,j; |
|
int k = get_network_output_size(net); |
|
matrix pred = make_matrix(test.X.rows, k); |
|
for(i = 0; i < test.X.rows; ++i){ |
|
float *out = network_predict(net, test.X.vals[i]); |
|
for(j = 0; j < k; ++j){ |
|
pred.vals[i][j] = out[j]; |
|
} |
|
} |
|
return pred; |
|
} |
|
|
|
void print_network(network net) |
|
{ |
|
int i,j; |
|
for(i = 0; i < net.n; ++i){ |
|
float *output = 0; |
|
int n = 0; |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
output = layer.output; |
|
image m = get_convolutional_image(layer); |
|
n = m.h*m.w*m.c; |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
output = layer.output; |
|
image m = get_maxpool_image(layer); |
|
n = m.h*m.w*m.c; |
|
} |
|
else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
output = layer.output; |
|
n = layer.outputs; |
|
} |
|
else if(net.types[i] == SOFTMAX){ |
|
softmax_layer layer = *(softmax_layer *)net.layers[i]; |
|
output = layer.output; |
|
n = layer.inputs; |
|
} |
|
float mean = mean_array(output, n); |
|
float vari = variance_array(output, n); |
|
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); |
|
if(n > 100) n = 100; |
|
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); |
|
if(n == 100)fprintf(stderr,".....\n"); |
|
fprintf(stderr, "\n"); |
|
} |
|
} |
|
|
|
float network_accuracy(network net, data d) |
|
{ |
|
matrix guess = network_predict_data(net, d); |
|
float acc = matrix_accuracy(d.y, guess); |
|
free_matrix(guess); |
|
return acc; |
|
} |
|
|
|
|