mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
392 lines
9.2 KiB
392 lines
9.2 KiB
//usr/bin/cc -Ofast -lm "${0}" -o "${0%.c}" && ./"${0%.c}" "$@"; s=$?; rm ./"${0%.c}"; exit $s |
|
|
|
#include <math.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <time.h> |
|
|
|
typedef struct matrix{ |
|
int rows, cols; |
|
double **vals; |
|
} matrix; |
|
|
|
matrix csv_to_matrix(char *filename, int header); |
|
matrix make_matrix(int rows, int cols); |
|
void zero_matrix(matrix m); |
|
|
|
void copy(double *x, double *y, int n); |
|
double dist(double *x, double *y, int n); |
|
int *sample(int n); |
|
|
|
int find_int_arg(int argc, char **argv, char *arg, int def); |
|
int find_arg(int argc, char* argv[], char *arg); |
|
|
|
int closest_center(double *datum, matrix centers) |
|
{ |
|
int j; |
|
int best = 0; |
|
double best_dist = dist(datum, centers.vals[best], centers.cols); |
|
for(j = 0; j < centers.rows; ++j){ |
|
double new_dist = dist(datum, centers.vals[j], centers.cols); |
|
if(new_dist < best_dist){ |
|
best_dist = new_dist; |
|
best = j; |
|
} |
|
} |
|
return best; |
|
} |
|
|
|
double dist_to_closest_center(double *datum, matrix centers) |
|
{ |
|
int ci = closest_center(datum, centers); |
|
return dist(datum, centers.vals[ci], centers.cols); |
|
} |
|
|
|
int kmeans_expectation(matrix data, int *assignments, matrix centers) |
|
{ |
|
int i; |
|
int converged = 1; |
|
for(i = 0; i < data.rows; ++i){ |
|
int closest = closest_center(data.vals[i], centers); |
|
if(closest != assignments[i]) converged = 0; |
|
assignments[i] = closest; |
|
} |
|
return converged; |
|
} |
|
|
|
void kmeans_maximization(matrix data, int *assignments, matrix centers) |
|
{ |
|
int i,j; |
|
int *counts = calloc(centers.rows, sizeof(int)); |
|
zero_matrix(centers); |
|
for(i = 0; i < data.rows; ++i){ |
|
++counts[assignments[i]]; |
|
for(j = 0; j < data.cols; ++j){ |
|
centers.vals[assignments[i]][j] += data.vals[i][j]; |
|
} |
|
} |
|
for(i = 0; i < centers.rows; ++i){ |
|
if(counts[i]){ |
|
for(j = 0; j < centers.cols; ++j){ |
|
centers.vals[i][j] /= counts[i]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
double WCSS(matrix data, int *assignments, matrix centers) |
|
{ |
|
int i, j; |
|
double sum = 0; |
|
|
|
for(i = 0; i < data.rows; ++i){ |
|
int ci = assignments[i]; |
|
sum += (1 - dist(data.vals[i], centers.vals[ci], data.cols)); |
|
} |
|
return sum / data.rows; |
|
} |
|
|
|
typedef struct{ |
|
int *assignments; |
|
matrix centers; |
|
} model; |
|
|
|
void smart_centers(matrix data, matrix centers) { |
|
int i,j; |
|
copy(data.vals[rand()%data.rows], centers.vals[0], data.cols); |
|
double *weights = calloc(data.rows, sizeof(double)); |
|
int clusters = centers.rows; |
|
for (i = 1; i < clusters; ++i) { |
|
double sum = 0; |
|
centers.rows = i; |
|
for (j = 0; j < data.rows; ++j) { |
|
weights[j] = dist_to_closest_center(data.vals[j], centers); |
|
sum += weights[j]; |
|
} |
|
double r = sum*((double)rand()/RAND_MAX); |
|
for (j = 0; j < data.rows; ++j) { |
|
r -= weights[j]; |
|
if(r <= 0){ |
|
copy(data.vals[j], centers.vals[i], data.cols); |
|
break; |
|
} |
|
} |
|
} |
|
free(weights); |
|
} |
|
|
|
void random_centers(matrix data, matrix centers){ |
|
int i; |
|
int *s = sample(data.rows); |
|
for(i = 0; i < centers.rows; ++i){ |
|
copy(data.vals[s[i]], centers.vals[i], data.cols); |
|
} |
|
free(s); |
|
} |
|
|
|
model do_kmeans(matrix data, int k) |
|
{ |
|
matrix centers = make_matrix(k, data.cols); |
|
int *assignments = calloc(data.rows, sizeof(int)); |
|
smart_centers(data, centers); |
|
//random_centers(data, centers); |
|
if(k == 1) kmeans_maximization(data, assignments, centers); |
|
while(!kmeans_expectation(data, assignments, centers)){ |
|
kmeans_maximization(data, assignments, centers); |
|
} |
|
model m; |
|
m.assignments = assignments; |
|
m.centers = centers; |
|
return m; |
|
} |
|
|
|
int main(int argc, char *argv[]) |
|
{ |
|
if(argc < 3){ |
|
fprintf(stderr, "usage: %s <csv-file> [points/centers/stats]\n", argv[0]); |
|
return 0; |
|
} |
|
int i,j; |
|
srand(time(0)); |
|
matrix data = csv_to_matrix(argv[1], 0); |
|
int k = find_int_arg(argc, argv, "-k", 2); |
|
int header = find_arg(argc, argv, "-h"); |
|
int count = find_arg(argc, argv, "-c"); |
|
|
|
if(strcmp(argv[2], "assignments")==0){ |
|
model m = do_kmeans(data, k); |
|
int *assignments = m.assignments; |
|
for(i = 0; i < k; ++i){ |
|
if(i != 0) printf("-\n"); |
|
for(j = 0; j < data.rows; ++j){ |
|
if(!(assignments[j] == i)) continue; |
|
printf("%f, %f\n", data.vals[j][0], data.vals[j][1]); |
|
} |
|
} |
|
}else if(strcmp(argv[2], "centers")==0){ |
|
model m = do_kmeans(data, k); |
|
printf("WCSS: %f\n", WCSS(data, m.assignments, m.centers)); |
|
int *counts = 0; |
|
if(count){ |
|
counts = calloc(k, sizeof(int)); |
|
for(j = 0; j < data.rows; ++j){ |
|
++counts[m.assignments[j]]; |
|
} |
|
} |
|
for(j = 0; j < m.centers.rows; ++j){ |
|
if(count) printf("%d, ", counts[j]); |
|
printf("%f, %f\n", m.centers.vals[j][0], m.centers.vals[j][1]); |
|
} |
|
}else if(strcmp(argv[2], "scan")==0){ |
|
for(i = 1; i <= k; ++i){ |
|
model m = do_kmeans(data, i); |
|
printf("%f\n", WCSS(data, m.assignments, m.centers)); |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
// Utility functions |
|
|
|
int *sample(int n) |
|
{ |
|
int i; |
|
int *s = calloc(n, sizeof(int)); |
|
for(i = 0; i < n; ++i) s[i] = i; |
|
for(i = n-1; i >= 0; --i){ |
|
int swap = s[i]; |
|
int index = rand()%(i+1); |
|
s[i] = s[index]; |
|
s[index] = swap; |
|
} |
|
return s; |
|
} |
|
|
|
double dist(double *x, double *y, int n) |
|
{ |
|
int i; |
|
double mw = (x[0] < y[0]) ? x[0] : y[0]; |
|
double mh = (x[1] < y[1]) ? x[1] : y[1]; |
|
double inter = mw*mh; |
|
double sum = x[0]*x[1] + y[0]*y[1]; |
|
double un = sum - inter; |
|
double iou = inter/un; |
|
return 1-iou; |
|
} |
|
|
|
void copy(double *x, double *y, int n) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i) y[i] = x[i]; |
|
} |
|
|
|
void error(char *s){ |
|
fprintf(stderr, "Error: %s\n", s); |
|
exit(0); |
|
} |
|
|
|
char *fgetl(FILE *fp) |
|
{ |
|
if(feof(fp)) return 0; |
|
int size = 512; |
|
char *line = malloc(size*sizeof(char)); |
|
if(!fgets(line, size, fp)){ |
|
free(line); |
|
return 0; |
|
} |
|
|
|
int curr = strlen(line); |
|
|
|
while(line[curr-1]!='\n'){ |
|
size *= 2; |
|
line = realloc(line, size*sizeof(char)); |
|
if(!line) error("Malloc"); |
|
fgets(&line[curr], size-curr, fp); |
|
curr = strlen(line); |
|
} |
|
line[curr-1] = '\0'; |
|
|
|
return line; |
|
} |
|
|
|
// Matrix stuff |
|
|
|
int count_fields(char *line) |
|
{ |
|
int count = 0; |
|
int done = 0; |
|
char *c; |
|
for(c = line; !done; ++c){ |
|
done = (*c == '\0'); |
|
if(*c == ',' || done) ++count; |
|
} |
|
return count; |
|
} |
|
|
|
double *parse_fields(char *l, int n) |
|
{ |
|
int i; |
|
double *field = calloc(n, sizeof(double)); |
|
for(i = 0; i < n; ++i){ |
|
field[i] = atof(l); |
|
l = strchr(l, ',')+1; |
|
} |
|
return field; |
|
} |
|
|
|
matrix make_matrix(int rows, int cols) |
|
{ |
|
matrix m; |
|
m.rows = rows; |
|
m.cols = cols; |
|
m.vals = calloc(m.rows, sizeof(double *)); |
|
int i; |
|
for(i = 0; i < m.rows; ++i) m.vals[i] = calloc(m.cols, sizeof(double)); |
|
return m; |
|
} |
|
|
|
void zero_matrix(matrix m) |
|
{ |
|
int i, j; |
|
for(i = 0; i < m.rows; ++i){ |
|
for(j = 0; j < m.cols; ++j) m.vals[i][j] = 0; |
|
} |
|
} |
|
|
|
matrix csv_to_matrix(char *filename, int header) |
|
{ |
|
FILE *fp = fopen(filename, "r"); |
|
if(!fp) error(filename); |
|
|
|
matrix m; |
|
m.cols = -1; |
|
|
|
char *line; |
|
|
|
int n = 0; |
|
int size = 1024; |
|
m.vals = calloc(size, sizeof(double*)); |
|
if(header) fgetl(fp); |
|
while((line = fgetl(fp))){ |
|
if(m.cols == -1) m.cols = count_fields(line); |
|
if(n == size){ |
|
size *= 2; |
|
m.vals = realloc(m.vals, size*sizeof(double*)); |
|
} |
|
m.vals[n] = parse_fields(line, m.cols); |
|
free(line); |
|
++n; |
|
} |
|
m.vals = realloc(m.vals, n*sizeof(double*)); |
|
m.rows = n; |
|
return m; |
|
} |
|
|
|
// Arguement parsing |
|
|
|
void del_arg(int argc, char **argv, int index) |
|
{ |
|
int i; |
|
for(i = index; i < argc-1; ++i) argv[i] = argv[i+1]; |
|
argv[i] = 0; |
|
} |
|
|
|
int find_arg(int argc, char* argv[], char *arg) |
|
{ |
|
int i; |
|
for(i = 0; i < argc; ++i) { |
|
if(!argv[i]) continue; |
|
if(0==strcmp(argv[i], arg)) { |
|
del_arg(argc, argv, i); |
|
return 1; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
int find_int_arg(int argc, char **argv, char *arg, int def) |
|
{ |
|
int i; |
|
for(i = 0; i < argc-1; ++i){ |
|
if(!argv[i]) continue; |
|
if(0==strcmp(argv[i], arg)){ |
|
def = atoi(argv[i+1]); |
|
del_arg(argc, argv, i); |
|
del_arg(argc, argv, i); |
|
break; |
|
} |
|
} |
|
return def; |
|
} |
|
|
|
float find_float_arg(int argc, char **argv, char *arg, float def) |
|
{ |
|
int i; |
|
for(i = 0; i < argc-1; ++i){ |
|
if(!argv[i]) continue; |
|
if(0==strcmp(argv[i], arg)){ |
|
def = atof(argv[i+1]); |
|
del_arg(argc, argv, i); |
|
del_arg(argc, argv, i); |
|
break; |
|
} |
|
} |
|
return def; |
|
} |
|
|
|
char *find_char_arg(int argc, char **argv, char *arg, char *def) |
|
{ |
|
int i; |
|
for(i = 0; i < argc-1; ++i){ |
|
if(!argv[i]) continue; |
|
if(0==strcmp(argv[i], arg)){ |
|
def = argv[i+1]; |
|
del_arg(argc, argv, i); |
|
del_arg(argc, argv, i); |
|
break; |
|
} |
|
} |
|
return def; |
|
} |
|
|
|
|