mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
785 lines
21 KiB
785 lines
21 KiB
#include <stdio.h> |
|
#include <time.h> |
|
#include <assert.h> |
|
#include "network.h" |
|
#include "image.h" |
|
#include "data.h" |
|
#include "utils.h" |
|
#include "blas.h" |
|
|
|
#include "crop_layer.h" |
|
#include "connected_layer.h" |
|
#include "gru_layer.h" |
|
#include "rnn_layer.h" |
|
#include "crnn_layer.h" |
|
#include "local_layer.h" |
|
#include "convolutional_layer.h" |
|
#include "activation_layer.h" |
|
#include "detection_layer.h" |
|
#include "region_layer.h" |
|
#include "normalization_layer.h" |
|
#include "batchnorm_layer.h" |
|
#include "maxpool_layer.h" |
|
#include "reorg_layer.h" |
|
#include "avgpool_layer.h" |
|
#include "cost_layer.h" |
|
#include "softmax_layer.h" |
|
#include "dropout_layer.h" |
|
#include "route_layer.h" |
|
#include "shortcut_layer.h" |
|
#include "yolo_layer.h" |
|
|
|
int get_current_batch(network net) |
|
{ |
|
int batch_num = (*net.seen)/(net.batch*net.subdivisions); |
|
return batch_num; |
|
} |
|
|
|
void reset_momentum(network net) |
|
{ |
|
if (net.momentum == 0) return; |
|
net.learning_rate = 0; |
|
net.momentum = 0; |
|
net.decay = 0; |
|
#ifdef GPU |
|
//if(net.gpu_index >= 0) update_network_gpu(net); |
|
#endif |
|
} |
|
|
|
float get_current_rate(network net) |
|
{ |
|
int batch_num = get_current_batch(net); |
|
int i; |
|
float rate; |
|
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power); |
|
switch (net.policy) { |
|
case CONSTANT: |
|
return net.learning_rate; |
|
case STEP: |
|
return net.learning_rate * pow(net.scale, batch_num/net.step); |
|
case STEPS: |
|
rate = net.learning_rate; |
|
for(i = 0; i < net.num_steps; ++i){ |
|
if(net.steps[i] > batch_num) return rate; |
|
rate *= net.scales[i]; |
|
//if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net); |
|
} |
|
return rate; |
|
case EXP: |
|
return net.learning_rate * pow(net.gamma, batch_num); |
|
case POLY: |
|
return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
|
//if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power); |
|
//return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
|
case RANDOM: |
|
return net.learning_rate * pow(rand_uniform(0,1), net.power); |
|
case SIG: |
|
return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); |
|
default: |
|
fprintf(stderr, "Policy is weird!\n"); |
|
return net.learning_rate; |
|
} |
|
} |
|
|
|
char *get_layer_string(LAYER_TYPE a) |
|
{ |
|
switch(a){ |
|
case CONVOLUTIONAL: |
|
return "convolutional"; |
|
case ACTIVE: |
|
return "activation"; |
|
case LOCAL: |
|
return "local"; |
|
case DECONVOLUTIONAL: |
|
return "deconvolutional"; |
|
case CONNECTED: |
|
return "connected"; |
|
case RNN: |
|
return "rnn"; |
|
case GRU: |
|
return "gru"; |
|
case CRNN: |
|
return "crnn"; |
|
case MAXPOOL: |
|
return "maxpool"; |
|
case REORG: |
|
return "reorg"; |
|
case AVGPOOL: |
|
return "avgpool"; |
|
case SOFTMAX: |
|
return "softmax"; |
|
case DETECTION: |
|
return "detection"; |
|
case REGION: |
|
return "region"; |
|
case DROPOUT: |
|
return "dropout"; |
|
case CROP: |
|
return "crop"; |
|
case COST: |
|
return "cost"; |
|
case ROUTE: |
|
return "route"; |
|
case SHORTCUT: |
|
return "shortcut"; |
|
case NORMALIZATION: |
|
return "normalization"; |
|
case BATCHNORM: |
|
return "batchnorm"; |
|
default: |
|
break; |
|
} |
|
return "none"; |
|
} |
|
|
|
network make_network(int n) |
|
{ |
|
network net = {0}; |
|
net.n = n; |
|
net.layers = calloc(net.n, sizeof(layer)); |
|
net.seen = calloc(1, sizeof(int)); |
|
#ifdef GPU |
|
net.input_gpu = calloc(1, sizeof(float *)); |
|
net.truth_gpu = calloc(1, sizeof(float *)); |
|
|
|
net.input16_gpu = calloc(1, sizeof(float *)); |
|
net.output16_gpu = calloc(1, sizeof(float *)); |
|
net.max_input16_size = calloc(1, sizeof(size_t)); |
|
net.max_output16_size = calloc(1, sizeof(size_t)); |
|
#endif |
|
return net; |
|
} |
|
|
|
void forward_network(network net, network_state state) |
|
{ |
|
state.workspace = net.workspace; |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
state.index = i; |
|
layer l = net.layers[i]; |
|
if(l.delta){ |
|
scal_cpu(l.outputs * l.batch, 0, l.delta, 1); |
|
} |
|
l.forward(l, state); |
|
state.input = l.output; |
|
} |
|
} |
|
|
|
void update_network(network net) |
|
{ |
|
int i; |
|
int update_batch = net.batch*net.subdivisions; |
|
float rate = get_current_rate(net); |
|
for(i = 0; i < net.n; ++i){ |
|
layer l = net.layers[i]; |
|
if(l.update){ |
|
l.update(l, update_batch, rate, net.momentum, net.decay); |
|
} |
|
} |
|
} |
|
|
|
float *get_network_output(network net) |
|
{ |
|
#ifdef GPU |
|
if (gpu_index >= 0) return get_network_output_gpu(net); |
|
#endif |
|
int i; |
|
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
|
return net.layers[i].output; |
|
} |
|
|
|
float get_network_cost(network net) |
|
{ |
|
int i; |
|
float sum = 0; |
|
int count = 0; |
|
for(i = 0; i < net.n; ++i){ |
|
if(net.layers[i].cost){ |
|
sum += net.layers[i].cost[0]; |
|
++count; |
|
} |
|
} |
|
return sum/count; |
|
} |
|
|
|
int get_predicted_class_network(network net) |
|
{ |
|
float *out = get_network_output(net); |
|
int k = get_network_output_size(net); |
|
return max_index(out, k); |
|
} |
|
|
|
void backward_network(network net, network_state state) |
|
{ |
|
int i; |
|
float *original_input = state.input; |
|
float *original_delta = state.delta; |
|
state.workspace = net.workspace; |
|
for(i = net.n-1; i >= 0; --i){ |
|
state.index = i; |
|
if(i == 0){ |
|
state.input = original_input; |
|
state.delta = original_delta; |
|
}else{ |
|
layer prev = net.layers[i-1]; |
|
state.input = prev.output; |
|
state.delta = prev.delta; |
|
} |
|
layer l = net.layers[i]; |
|
if (l.stopbackward) break; |
|
l.backward(l, state); |
|
} |
|
} |
|
|
|
float train_network_datum(network net, float *x, float *y) |
|
{ |
|
#ifdef GPU |
|
if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); |
|
#endif |
|
network_state state; |
|
*net.seen += net.batch; |
|
state.index = 0; |
|
state.net = net; |
|
state.input = x; |
|
state.delta = 0; |
|
state.truth = y; |
|
state.train = 1; |
|
forward_network(net, state); |
|
backward_network(net, state); |
|
float error = get_network_cost(net); |
|
if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net); |
|
return error; |
|
} |
|
|
|
float train_network_sgd(network net, data d, int n) |
|
{ |
|
int batch = net.batch; |
|
float *X = calloc(batch*d.X.cols, sizeof(float)); |
|
float *y = calloc(batch*d.y.cols, sizeof(float)); |
|
|
|
int i; |
|
float sum = 0; |
|
for(i = 0; i < n; ++i){ |
|
get_random_batch(d, batch, X, y); |
|
float err = train_network_datum(net, X, y); |
|
sum += err; |
|
} |
|
free(X); |
|
free(y); |
|
return (float)sum/(n*batch); |
|
} |
|
|
|
float train_network(network net, data d) |
|
{ |
|
assert(d.X.rows % net.batch == 0); |
|
int batch = net.batch; |
|
int n = d.X.rows / batch; |
|
float *X = calloc(batch*d.X.cols, sizeof(float)); |
|
float *y = calloc(batch*d.y.cols, sizeof(float)); |
|
|
|
int i; |
|
float sum = 0; |
|
for(i = 0; i < n; ++i){ |
|
get_next_batch(d, batch, i*batch, X, y); |
|
float err = train_network_datum(net, X, y); |
|
sum += err; |
|
} |
|
free(X); |
|
free(y); |
|
return (float)sum/(n*batch); |
|
} |
|
|
|
|
|
float train_network_batch(network net, data d, int n) |
|
{ |
|
int i,j; |
|
network_state state; |
|
state.index = 0; |
|
state.net = net; |
|
state.train = 1; |
|
state.delta = 0; |
|
float sum = 0; |
|
int batch = 2; |
|
for(i = 0; i < n; ++i){ |
|
for(j = 0; j < batch; ++j){ |
|
int index = rand()%d.X.rows; |
|
state.input = d.X.vals[index]; |
|
state.truth = d.y.vals[index]; |
|
forward_network(net, state); |
|
backward_network(net, state); |
|
sum += get_network_cost(net); |
|
} |
|
update_network(net); |
|
} |
|
return (float)sum/(n*batch); |
|
} |
|
|
|
void set_batch_network(network *net, int b) |
|
{ |
|
net->batch = b; |
|
int i; |
|
for(i = 0; i < net->n; ++i){ |
|
net->layers[i].batch = b; |
|
#ifdef CUDNN |
|
if(net->layers[i].type == CONVOLUTIONAL){ |
|
cudnn_convolutional_setup(net->layers + i, cudnn_fastest); |
|
/* |
|
layer *l = net->layers + i; |
|
cudnn_convolutional_setup(l, cudnn_fastest); |
|
// check for excessive memory consumption |
|
size_t free_byte; |
|
size_t total_byte; |
|
check_error(cudaMemGetInfo(&free_byte, &total_byte)); |
|
if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) { |
|
printf(" used slow CUDNN algo without Workspace! \n"); |
|
cudnn_convolutional_setup(l, cudnn_smallest); |
|
l->workspace_size = get_workspace_size(*l); |
|
} |
|
*/ |
|
} |
|
#endif |
|
} |
|
} |
|
|
|
int resize_network(network *net, int w, int h) |
|
{ |
|
#ifdef GPU |
|
cuda_set_device(net->gpu_index); |
|
if(gpu_index >= 0){ |
|
cuda_free(net->workspace); |
|
if (net->input_gpu) { |
|
cuda_free(*net->input_gpu); |
|
*net->input_gpu = 0; |
|
cuda_free(*net->truth_gpu); |
|
*net->truth_gpu = 0; |
|
} |
|
} |
|
#endif |
|
int i; |
|
//if(w == net->w && h == net->h) return 0; |
|
net->w = w; |
|
net->h = h; |
|
int inputs = 0; |
|
size_t workspace_size = 0; |
|
//fprintf(stderr, "Resizing to %d x %d...\n", w, h); |
|
//fflush(stderr); |
|
for (i = 0; i < net->n; ++i){ |
|
layer l = net->layers[i]; |
|
//printf(" %d: layer = %d,", i, l.type); |
|
if(l.type == CONVOLUTIONAL){ |
|
resize_convolutional_layer(&l, w, h); |
|
}else if(l.type == CROP){ |
|
resize_crop_layer(&l, w, h); |
|
}else if(l.type == MAXPOOL){ |
|
resize_maxpool_layer(&l, w, h); |
|
}else if(l.type == REGION){ |
|
resize_region_layer(&l, w, h); |
|
}else if (l.type == YOLO) { |
|
resize_yolo_layer(&l, w, h); |
|
}else if(l.type == ROUTE){ |
|
resize_route_layer(&l, net); |
|
}else if (l.type == SHORTCUT) { |
|
resize_shortcut_layer(&l, w, h); |
|
}else if (l.type == UPSAMPLE) { |
|
resize_upsample_layer(&l, w, h); |
|
}else if(l.type == REORG){ |
|
resize_reorg_layer(&l, w, h); |
|
}else if(l.type == AVGPOOL){ |
|
resize_avgpool_layer(&l, w, h); |
|
}else if(l.type == NORMALIZATION){ |
|
resize_normalization_layer(&l, w, h); |
|
}else if(l.type == COST){ |
|
resize_cost_layer(&l, inputs); |
|
}else{ |
|
fprintf(stderr, "Resizing type %d \n", (int)l.type); |
|
error("Cannot resize this type of layer"); |
|
} |
|
if(l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
|
inputs = l.outputs; |
|
net->layers[i] = l; |
|
w = l.out_w; |
|
h = l.out_h; |
|
if(l.type == AVGPOOL) break; |
|
} |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
printf(" try to allocate workspace = %zu * sizeof(float), ", (workspace_size - 1) / sizeof(float) + 1); |
|
net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); |
|
printf(" CUDA allocate done! \n"); |
|
}else { |
|
free(net->workspace); |
|
net->workspace = calloc(1, workspace_size); |
|
} |
|
#else |
|
free(net->workspace); |
|
net->workspace = calloc(1, workspace_size); |
|
#endif |
|
//fprintf(stderr, " Done!\n"); |
|
return 0; |
|
} |
|
|
|
int get_network_output_size(network net) |
|
{ |
|
int i; |
|
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
|
return net.layers[i].outputs; |
|
} |
|
|
|
int get_network_input_size(network net) |
|
{ |
|
return net.layers[0].inputs; |
|
} |
|
|
|
detection_layer get_network_detection_layer(network net) |
|
{ |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
if(net.layers[i].type == DETECTION){ |
|
return net.layers[i]; |
|
} |
|
} |
|
fprintf(stderr, "Detection layer not found!!\n"); |
|
detection_layer l = {0}; |
|
return l; |
|
} |
|
|
|
image get_network_image_layer(network net, int i) |
|
{ |
|
layer l = net.layers[i]; |
|
if (l.out_w && l.out_h && l.out_c){ |
|
return float_to_image(l.out_w, l.out_h, l.out_c, l.output); |
|
} |
|
image def = {0}; |
|
return def; |
|
} |
|
|
|
image get_network_image(network net) |
|
{ |
|
int i; |
|
for(i = net.n-1; i >= 0; --i){ |
|
image m = get_network_image_layer(net, i); |
|
if(m.h != 0) return m; |
|
} |
|
image def = {0}; |
|
return def; |
|
} |
|
|
|
void visualize_network(network net) |
|
{ |
|
image *prev = 0; |
|
int i; |
|
char buff[256]; |
|
for(i = 0; i < net.n; ++i){ |
|
sprintf(buff, "Layer %d", i); |
|
layer l = net.layers[i]; |
|
if(l.type == CONVOLUTIONAL){ |
|
prev = visualize_convolutional_layer(l, buff, prev); |
|
} |
|
} |
|
} |
|
|
|
void top_predictions(network net, int k, int *index) |
|
{ |
|
int size = get_network_output_size(net); |
|
float *out = get_network_output(net); |
|
top_k(out, size, k, index); |
|
} |
|
|
|
|
|
float *network_predict(network net, float *input) |
|
{ |
|
#ifdef GPU |
|
if(gpu_index >= 0) return network_predict_gpu(net, input); |
|
#endif |
|
|
|
network_state state; |
|
state.net = net; |
|
state.index = 0; |
|
state.input = input; |
|
state.truth = 0; |
|
state.train = 0; |
|
state.delta = 0; |
|
forward_network(net, state); |
|
float *out = get_network_output(net); |
|
return out; |
|
} |
|
|
|
int num_detections(network *net, float thresh) |
|
{ |
|
int i; |
|
int s = 0; |
|
for (i = 0; i < net->n; ++i) { |
|
layer l = net->layers[i]; |
|
if (l.type == YOLO) { |
|
s += yolo_num_detections(l, thresh); |
|
} |
|
if (l.type == DETECTION || l.type == REGION) { |
|
s += l.w*l.h*l.n; |
|
} |
|
} |
|
return s; |
|
} |
|
|
|
detection *make_network_boxes(network *net, float thresh, int *num) |
|
{ |
|
layer l = net->layers[net->n - 1]; |
|
int i; |
|
int nboxes = num_detections(net, thresh); |
|
if (num) *num = nboxes; |
|
detection *dets = calloc(nboxes, sizeof(detection)); |
|
for (i = 0; i < nboxes; ++i) { |
|
dets[i].prob = calloc(l.classes, sizeof(float)); |
|
if (l.coords > 4) { |
|
dets[i].mask = calloc(l.coords - 4, sizeof(float)); |
|
} |
|
} |
|
return dets; |
|
} |
|
|
|
|
|
void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter) |
|
{ |
|
box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); |
|
float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); |
|
int i, j; |
|
for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); |
|
get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map); |
|
for (j = 0; j < l.w*l.h*l.n; ++j) { |
|
dets[j].classes = l.classes; |
|
dets[j].bbox = boxes[j]; |
|
dets[j].objectness = 1; |
|
for (i = 0; i < l.classes; ++i) { |
|
dets[j].prob[i] = probs[j][i]; |
|
} |
|
} |
|
|
|
free(boxes); |
|
free_ptrs((void **)probs, l.w*l.h*l.n); |
|
} |
|
|
|
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter) |
|
{ |
|
int j; |
|
for (j = 0; j < net->n; ++j) { |
|
layer l = net->layers[j]; |
|
if (l.type == YOLO) { |
|
int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter); |
|
dets += count; |
|
} |
|
if (l.type == REGION) { |
|
custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter); |
|
//get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets); |
|
dets += l.w*l.h*l.n; |
|
} |
|
if (l.type == DETECTION) { |
|
get_detection_detections(l, w, h, thresh, dets); |
|
dets += l.w*l.h*l.n; |
|
} |
|
} |
|
} |
|
|
|
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter) |
|
{ |
|
detection *dets = make_network_boxes(net, thresh, num); |
|
fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter); |
|
return dets; |
|
} |
|
|
|
void free_detections(detection *dets, int n) |
|
{ |
|
int i; |
|
for (i = 0; i < n; ++i) { |
|
free(dets[i].prob); |
|
if (dets[i].mask) free(dets[i].mask); |
|
} |
|
free(dets); |
|
} |
|
|
|
float *network_predict_image(network *net, image im) |
|
{ |
|
image imr = letterbox_image(im, net->w, net->h); |
|
set_batch_network(net, 1); |
|
float *p = network_predict(*net, imr.data); |
|
free_image(imr); |
|
return p; |
|
} |
|
|
|
int network_width(network *net) { return net->w; } |
|
int network_height(network *net) { return net->h; } |
|
|
|
matrix network_predict_data_multi(network net, data test, int n) |
|
{ |
|
int i,j,b,m; |
|
int k = get_network_output_size(net); |
|
matrix pred = make_matrix(test.X.rows, k); |
|
float *X = calloc(net.batch*test.X.rows, sizeof(float)); |
|
for(i = 0; i < test.X.rows; i += net.batch){ |
|
for(b = 0; b < net.batch; ++b){ |
|
if(i+b == test.X.rows) break; |
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
|
} |
|
for(m = 0; m < n; ++m){ |
|
float *out = network_predict(net, X); |
|
for(b = 0; b < net.batch; ++b){ |
|
if(i+b == test.X.rows) break; |
|
for(j = 0; j < k; ++j){ |
|
pred.vals[i+b][j] += out[j+b*k]/n; |
|
} |
|
} |
|
} |
|
} |
|
free(X); |
|
return pred; |
|
} |
|
|
|
matrix network_predict_data(network net, data test) |
|
{ |
|
int i,j,b; |
|
int k = get_network_output_size(net); |
|
matrix pred = make_matrix(test.X.rows, k); |
|
float *X = calloc(net.batch*test.X.cols, sizeof(float)); |
|
for(i = 0; i < test.X.rows; i += net.batch){ |
|
for(b = 0; b < net.batch; ++b){ |
|
if(i+b == test.X.rows) break; |
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
|
} |
|
float *out = network_predict(net, X); |
|
for(b = 0; b < net.batch; ++b){ |
|
if(i+b == test.X.rows) break; |
|
for(j = 0; j < k; ++j){ |
|
pred.vals[i+b][j] = out[j+b*k]; |
|
} |
|
} |
|
} |
|
free(X); |
|
return pred; |
|
} |
|
|
|
void print_network(network net) |
|
{ |
|
int i,j; |
|
for(i = 0; i < net.n; ++i){ |
|
layer l = net.layers[i]; |
|
float *output = l.output; |
|
int n = l.outputs; |
|
float mean = mean_array(output, n); |
|
float vari = variance_array(output, n); |
|
fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); |
|
if(n > 100) n = 100; |
|
for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); |
|
if(n == 100)fprintf(stderr,".....\n"); |
|
fprintf(stderr, "\n"); |
|
} |
|
} |
|
|
|
void compare_networks(network n1, network n2, data test) |
|
{ |
|
matrix g1 = network_predict_data(n1, test); |
|
matrix g2 = network_predict_data(n2, test); |
|
int i; |
|
int a,b,c,d; |
|
a = b = c = d = 0; |
|
for(i = 0; i < g1.rows; ++i){ |
|
int truth = max_index(test.y.vals[i], test.y.cols); |
|
int p1 = max_index(g1.vals[i], g1.cols); |
|
int p2 = max_index(g2.vals[i], g2.cols); |
|
if(p1 == truth){ |
|
if(p2 == truth) ++d; |
|
else ++c; |
|
}else{ |
|
if(p2 == truth) ++b; |
|
else ++a; |
|
} |
|
} |
|
printf("%5d %5d\n%5d %5d\n", a, b, c, d); |
|
float num = pow((abs(b - c) - 1.), 2.); |
|
float den = b + c; |
|
printf("%f\n", num/den); |
|
} |
|
|
|
float network_accuracy(network net, data d) |
|
{ |
|
matrix guess = network_predict_data(net, d); |
|
float acc = matrix_topk_accuracy(d.y, guess,1); |
|
free_matrix(guess); |
|
return acc; |
|
} |
|
|
|
float *network_accuracies(network net, data d, int n) |
|
{ |
|
static float acc[2]; |
|
matrix guess = network_predict_data(net, d); |
|
acc[0] = matrix_topk_accuracy(d.y, guess, 1); |
|
acc[1] = matrix_topk_accuracy(d.y, guess, n); |
|
free_matrix(guess); |
|
return acc; |
|
} |
|
|
|
float network_accuracy_multi(network net, data d, int n) |
|
{ |
|
matrix guess = network_predict_data_multi(net, d, n); |
|
float acc = matrix_topk_accuracy(d.y, guess,1); |
|
free_matrix(guess); |
|
return acc; |
|
} |
|
|
|
void free_network(network net) |
|
{ |
|
int i; |
|
for (i = 0; i < net.n; ++i) { |
|
free_layer(net.layers[i]); |
|
} |
|
free(net.layers); |
|
#ifdef GPU |
|
if (gpu_index >= 0) cuda_free(net.workspace); |
|
else free(net.workspace); |
|
if (*net.input_gpu) cuda_free(*net.input_gpu); |
|
if (*net.truth_gpu) cuda_free(*net.truth_gpu); |
|
if (net.input_gpu) free(net.input_gpu); |
|
if (net.truth_gpu) free(net.truth_gpu); |
|
|
|
if (*net.input16_gpu) cuda_free(*net.input16_gpu); |
|
if (*net.output16_gpu) cuda_free(*net.output16_gpu); |
|
if (net.input16_gpu) free(net.input16_gpu); |
|
if (net.output16_gpu) free(net.output16_gpu); |
|
if (net.max_input16_size) free(net.max_input16_size); |
|
if (net.max_output16_size) free(net.max_output16_size); |
|
#else |
|
free(net.workspace); |
|
#endif |
|
} |
|
|
|
|
|
void fuse_conv_batchnorm(network net) |
|
{ |
|
int j; |
|
for (j = 0; j < net.n; ++j) { |
|
layer *l = &net.layers[j]; |
|
|
|
if (l->type == CONVOLUTIONAL) { |
|
printf(" Fuse Convolutional layer \t\t l->size = %d \n", l->size); |
|
|
|
if (l->batch_normalize) { |
|
int f; |
|
for (f = 0; f < l->n; ++f) |
|
{ |
|
l->biases[f] = l->biases[f] - l->scales[f] * l->rolling_mean[f] / (sqrtf(l->rolling_variance[f]) + .000001f); |
|
|
|
const size_t filter_size = l->size*l->size*l->c; |
|
int i; |
|
for (i = 0; i < filter_size; ++i) { |
|
int w_index = f*filter_size + i; |
|
|
|
l->weights[w_index] = l->weights[w_index] * l->scales[f] / (sqrtf(l->rolling_variance[f]) + .000001f); |
|
} |
|
} |
|
|
|
l->batch_normalize = 0; |
|
push_convolutional_layer(*l); |
|
} |
|
} |
|
else { |
|
printf(" Skip layer: %d \n", l->type); |
|
} |
|
} |
|
}
|
|
|