You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

590 lines
20 KiB

#include "darknet.h"
#include <cuda_runtime.h>
#include <curand.h>
#include <cublas_v2.h>
#include <float.h>
#include "activations.h"
#include "dark_cuda.h"
__device__ float lhtan_activate_kernel(float x)
{
if(x < 0) return .001*x;
if(x > 1) return .001*(x-1) + 1;
return x;
}
__device__ float lhtan_gradient_kernel(float x)
{
if(x > 0 && x < 1) return 1;
return .001;
}
__device__ float hardtan_activate_kernel(float x)
{
if (x < -1) return -1;
if (x > 1) return 1;
return x;
}
__device__ float linear_activate_kernel(float x){return x;}
__device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));}
__device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;}
__device__ float relu_activate_kernel(float x){return x*(x>0);}
__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);}
__device__ float selu_activate_kernel(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); }
__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;}
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;}
__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;}
__device__ float tanh_activate_kernel(float x){return (2/(1 + expf(-2*x)) - 1);}
__device__ float softplus_kernel(float x, float threshold = 20) {
if (x > threshold) return x; // too large
else if (x < -threshold) return expf(x); // too small
return logf(expf(x) + 1);
}
__device__ float plse_activate_kernel(float x)
{
if(x < -4) return .01f * (x + 4);
if(x > 4) return .01f * (x - 4) + 1;
return .125f*x + .5f;
}
__device__ float stair_activate_kernel(float x)
{
int n = floorf(x);
if (n%2 == 0) return floorf(x/2.f);
else return (x - n) + floorf(x/2.f);
}
__device__ float hardtan_gradient_kernel(float x)
{
if (x > -1 && x < 1) return 1;
return 0;
}
__device__ float linear_gradient_kernel(float x){return 1;}
__device__ float logistic_gradient_kernel(float x){return (1-x)*x;}
__device__ float loggy_gradient_kernel(float x)
{
float y = (x+1.F)/2.F;
return 2*(1-y)*y;
}
__device__ float relu_gradient_kernel(float x){return (x>0);}
__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);}
__device__ float selu_gradient_kernel(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); }
__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;}
__device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;}
__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;}
__device__ float tanh_gradient_kernel(float x){return 1-x*x;}
__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;}
__device__ float stair_gradient_kernel(float x)
{
if (floor(x) == x) return 0;
return 1;
}
__device__ float activate_kernel(float x, ACTIVATION a)
{
switch(a){
case LINEAR:
return linear_activate_kernel(x);
case LOGISTIC:
return logistic_activate_kernel(x);
case LOGGY:
return loggy_activate_kernel(x);
case RELU:
return relu_activate_kernel(x);
case ELU:
return elu_activate_kernel(x);
case SELU:
return selu_activate_kernel(x);
case RELIE:
return relie_activate_kernel(x);
case RAMP:
return ramp_activate_kernel(x);
case LEAKY:
return leaky_activate_kernel(x);
case TANH:
return tanh_activate_kernel(x);
case PLSE:
return plse_activate_kernel(x);
case STAIR:
return stair_activate_kernel(x);
case HARDTAN:
return hardtan_activate_kernel(x);
case LHTAN:
return lhtan_activate_kernel(x);
}
return 0;
}
__device__ float gradient_kernel(float x, ACTIVATION a)
{
switch (a) {
case LINEAR:
return linear_gradient_kernel(x);
case LOGISTIC:
return logistic_gradient_kernel(x);
case LOGGY:
return loggy_gradient_kernel(x);
case RELU:
return relu_gradient_kernel(x);
case NORM_CHAN:
return relu_gradient_kernel(x);
case ELU:
return elu_gradient_kernel(x);
case SELU:
return selu_gradient_kernel(x);
case RELIE:
return relie_gradient_kernel(x);
case RAMP:
return ramp_gradient_kernel(x);
case LEAKY:
return leaky_gradient_kernel(x);
case TANH:
return tanh_gradient_kernel(x);
case PLSE:
return plse_gradient_kernel(x);
case STAIR:
return stair_gradient_kernel(x);
case HARDTAN:
return hardtan_gradient_kernel(x);
case LHTAN:
return lhtan_gradient_kernel(x);
}
return 0;
}
__global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx)
{
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
int i = id % s;
int b = id / s;
float x1 = x[b*s + i];
float x2 = x[b*s + s / 2 + i];
if (id < n) {
float de = dy[id];
dx[b*s + i] = x2*de;
dx[b*s + s / 2 + i] = x1*de;
}
}
extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y)
{
binary_gradient_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, dx, n / 2, size, a, y);
CHECK_CUDA(cudaPeekAtLastError());
}
__global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y)
{
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
int i = id % s;
int b = id / s;
float x1 = x[b*s + i];
float x2 = x[b*s + s / 2 + i];
if (id < n) y[id] = x1*x2;
}
extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y)
{
binary_activate_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, n / 2, size, a, y);
CHECK_CUDA(cudaPeekAtLastError());
}
__global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i < n) x[i] = activate_kernel(x[i], a);
}
__global__ void activate_array_swish_kernel(float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i < n) {
float x_val = x[i];
float sigmoid = logistic_activate_kernel(x_val);
output_sigmoid_gpu[i] = sigmoid;
output_gpu[i] = x_val * sigmoid;
}
}
// https://github.com/digantamisra98/Mish
__global__ void activate_array_mish_kernel(float *x, int n, float *activation_input, float *output_gpu)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i < n) {
const float MISH_THRESHOLD = 20;
float x_val = x[i];
activation_input[i] = x_val; // store value before activation
//output_gpu[i] = x_val * tanh_activate_kernel(logf(1 + expf(x_val)));
// Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L17-L20
// TF: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L40-L49
// log1p(x) == log(x + 1)
output_gpu[i] = x_val * tanh_activate_kernel( softplus_kernel(x_val, MISH_THRESHOLD) );
}
}
__global__ void activate_array_leaky_kernel(float *x, int n)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
x[index] = leaky_activate_kernel(x[index]);
}
}
__global__ void activate_array_selu_kernel(float *x, int n)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
x[index] = selu_activate_kernel(x[index]);
}
}
__global__ void activate_array_logistic_kernel(float *x, int n)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
x[index] = logistic_activate_kernel(x[index]);
}
}
__global__ void activate_array_tanh_kernel(float *x, int n)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
x[index] = tanh_activate_kernel(x[index]);
}
}
__global__ void activate_array_hardtan_kernel(float *x, int n)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
x[index] = hardtan_activate_kernel(x[index]);
}
}
__global__ void activate_array_relu_kernel(float *x, int n)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
x[index] = relu_activate_kernel(x[index]);
}
}
__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(i < n) delta[i] *= gradient_kernel(x[i], a);
}
// https://github.com/BVLC/caffe/blob/04ab089db018a292ae48d51732dd6c66766b36b6/src/caffe/layers/swish_layer.cu#L28-L30
__global__ void gradient_array_swish_kernel(float *x, int n, float *sigmoid_gpu, float *delta)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i < n) {
float swish = x[i];
delta[i] *= swish + sigmoid_gpu[i] * (1 - swish); // gradient_kernel(x[i], a);
}
}
// https://github.com/digantamisra98/Mish
__global__ void gradient_array_mish_kernel(int n, float *activation_input_gpu, float *delta)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i < n) {
const float MISH_THRESHOLD = 20.0f;
// implementation from TensorFlow: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L66-L80
// implementation from Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L26-L31
// log1p(x) == log(x + 1)
const float inp = activation_input_gpu[i];
const float sp = softplus_kernel(inp, MISH_THRESHOLD);
const float grad_sp = 1 - expf(-sp);
const float tsp = tanh(sp);
const float grad_tsp = (1 - tsp*tsp) * grad_sp;
const float grad = inp * grad_tsp + tsp;
delta[i] *= grad;
//float x = activation_input[i];
//float d = 2 * expf(x) + expf(2 * x) + 2;
//float w = 4 * (x + 1) + 4 * expf(2 * x) + expf(3 * x) + expf(x)*(4 * x + 6);
//float derivative = expf(x) * w / (d * d);
//delta[i] *= derivative;
}
}
__global__ void gradient_array_leaky_kernel(float *x, int n, float *delta)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
delta[index] *= leaky_gradient_kernel(x[index]);
}
}
__global__ void gradient_array_selu_kernel(float *x, int n, float *delta)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
delta[index] *= selu_gradient_kernel(x[index]);
}
}
__global__ void gradient_array_logistic_kernel(float *x, int n, float *delta)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
delta[index] *= logistic_gradient_kernel(x[index]);
}
}
__global__ void gradient_array_tanh_kernel(float *x, int n, float *delta)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
delta[index] *= tanh_gradient_kernel(x[index]);
}
}
__global__ void gradient_array_hardtan_kernel(float *x, int n, float *delta)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
delta[index] *= hardtan_gradient_kernel(x[index]);
}
}
__global__ void gradient_array_relu_kernel(float *x, int n, float *delta)
{
int index = blockIdx.x*blockDim.x + threadIdx.x;
if (index < n) {
delta[index] *= relu_gradient_kernel(x[index]);
}
}
extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a)
{
const int num_blocks = get_number_of_blocks(n, BLOCK);
if (a == LINEAR) return;
else if(a == LEAKY) activate_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
else if (a == LOGISTIC) activate_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
else if (a == TANH) activate_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
else if (a == HARDTAN) activate_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
else if (a == RELU) activate_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
else if (a == SELU) activate_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n);
else
activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a);
CHECK_CUDA(cudaPeekAtLastError());
}
extern "C" void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu)
{
const int num_blocks = get_number_of_blocks(n, BLOCK);
activate_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, output_sigmoid_gpu, output_gpu);
CHECK_CUDA(cudaPeekAtLastError());
}
extern "C" void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu)
{
const int num_blocks = get_number_of_blocks(n, BLOCK);
activate_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu);
CHECK_CUDA(cudaPeekAtLastError());
}
extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta)
{
const int num_blocks = get_number_of_blocks(n, BLOCK);
if (a == LINEAR) return;
else if (a == LEAKY) gradient_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
else if (a == LOGISTIC) gradient_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
else if (a == TANH) gradient_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
else if (a == HARDTAN) gradient_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
else if (a == RELU) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
//else if (a == NORM_CHAN) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
else if (a == NORM_CHAN_SOFTMAX || a == NORM_CHAN) {
printf(" Error: should be used custom NORM_CHAN_SOFTMAX-function for gradient \n");
exit(0);
}
else if (a == SELU) gradient_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta);
else
gradient_array_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, a, delta);
CHECK_CUDA(cudaPeekAtLastError());
}
extern "C" void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta)
{
const int num_blocks = get_number_of_blocks(n, BLOCK);
gradient_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, sigmoid_gpu, delta);
CHECK_CUDA(cudaPeekAtLastError());
}
extern "C" void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta)
{
const int num_blocks = get_number_of_blocks(n, BLOCK);
gradient_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta);
CHECK_CUDA(cudaPeekAtLastError());
}
__global__ void activate_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int wh_i = i % wh_step;
int b = i / wh_step;
const float eps = 0.0001;
if (i < size) {
float sum = eps;
int k;
for (k = 0; k < channels; ++k) {
float val = x[wh_i + k * wh_step + b*wh_step*channels];
if (val > 0) sum += val;
}
for (k = 0; k < channels; ++k) {
float val = x[wh_i + k * wh_step + b*wh_step*channels];
if (val > 0) val = val / sum;
else val = 0;
output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val;
}
}
}
extern "C" void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu)
{
// n = w*h*c*batch
// size = w*h*batch
int size = n / channels;
const int num_blocks = get_number_of_blocks(size, BLOCK);
activate_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu);
CHECK_CUDA(cudaPeekAtLastError());
}
__global__ void activate_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int wh_i = i % wh_step;
int b = i / wh_step;
const float eps = 0.0001;
if (i < size) {
float sum = eps;
float max_val = -FLT_MAX;
int k;
if (use_max_val) {
for (k = 0; k < channels; ++k) {
float val = x[wh_i + k * wh_step + b*wh_step*channels];
if (val > max_val) max_val = val;
}
}
else
max_val = 0;
for (k = 0; k < channels; ++k) {
float val = x[wh_i + k * wh_step + b*wh_step*channels];
sum += expf(val - max_val);
}
for (k = 0; k < channels; ++k) {
float val = x[wh_i + k * wh_step + b*wh_step*channels];
val = expf(val - max_val) / sum;
output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val;
}
}
}
extern "C" void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val)
{
// n = w*h*c*batch
// size = w*h*batch
int size = n / channels;
const int num_blocks = get_number_of_blocks(size, BLOCK);
activate_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu, use_max_val);
CHECK_CUDA(cudaPeekAtLastError());
}
__global__ void gradient_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int wh_i = i % wh_step;
int b = i / wh_step;
if (i < size) {
float grad = 0;
int k;
for (k = 0; k < channels; ++k) {
const int index = wh_i + k * wh_step + b*wh_step*channels;
float out = x[index];
float delta = delta_gpu[index];
grad += out*delta;
}
for (k = 0; k < channels; ++k) {
const int index = wh_i + k * wh_step + b*wh_step*channels;
float delta = delta_gpu[index];
delta = delta * grad;
delta_gpu[index] = delta;
}
}
}
extern "C" void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
{
// n = w*h*c*batch
// size = w*h*batch
int size = n / channels;
const int num_blocks = get_number_of_blocks(size, BLOCK);
gradient_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu);
CHECK_CUDA(cudaPeekAtLastError());
}
__global__ void gradient_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int wh_i = i % wh_step;
int b = i / wh_step;
if (i < size) {
float grad = 0;
int k;
for (k = 0; k < channels; ++k) {
const int index = wh_i + k * wh_step + b*wh_step*channels;
float out = x[index];
float delta = delta_gpu[index];
grad += out*delta;
}
for (k = 0; k < channels; ++k) {
const int index = wh_i + k * wh_step + b*wh_step*channels;
if (x[index] > 0) {
float delta = delta_gpu[index];
delta = delta * grad;
delta_gpu[index] = delta;
}
}
}
}
extern "C" void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu)
{
// n = w*h*c*batch
// size = w*h*batch
int size = n / channels;
const int num_blocks = get_number_of_blocks(size, BLOCK);
gradient_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu);
CHECK_CUDA(cudaPeekAtLastError());
}