mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
590 lines
20 KiB
590 lines
20 KiB
#include "darknet.h" |
|
#include <cuda_runtime.h> |
|
#include <curand.h> |
|
#include <cublas_v2.h> |
|
#include <float.h> |
|
|
|
#include "activations.h" |
|
#include "dark_cuda.h" |
|
|
|
|
|
__device__ float lhtan_activate_kernel(float x) |
|
{ |
|
if(x < 0) return .001*x; |
|
if(x > 1) return .001*(x-1) + 1; |
|
return x; |
|
} |
|
__device__ float lhtan_gradient_kernel(float x) |
|
{ |
|
if(x > 0 && x < 1) return 1; |
|
return .001; |
|
} |
|
|
|
__device__ float hardtan_activate_kernel(float x) |
|
{ |
|
if (x < -1) return -1; |
|
if (x > 1) return 1; |
|
return x; |
|
} |
|
__device__ float linear_activate_kernel(float x){return x;} |
|
__device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));} |
|
__device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;} |
|
__device__ float relu_activate_kernel(float x){return x*(x>0);} |
|
__device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);} |
|
__device__ float selu_activate_kernel(float x) { return (x >= 0)*1.0507f*x + (x < 0)*1.0507f*1.6732f*(expf(x) - 1); } |
|
__device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;} |
|
__device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;} |
|
__device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;} |
|
__device__ float tanh_activate_kernel(float x){return (2/(1 + expf(-2*x)) - 1);} |
|
__device__ float softplus_kernel(float x, float threshold = 20) { |
|
if (x > threshold) return x; // too large |
|
else if (x < -threshold) return expf(x); // too small |
|
return logf(expf(x) + 1); |
|
} |
|
__device__ float plse_activate_kernel(float x) |
|
{ |
|
if(x < -4) return .01f * (x + 4); |
|
if(x > 4) return .01f * (x - 4) + 1; |
|
return .125f*x + .5f; |
|
} |
|
__device__ float stair_activate_kernel(float x) |
|
{ |
|
int n = floorf(x); |
|
if (n%2 == 0) return floorf(x/2.f); |
|
else return (x - n) + floorf(x/2.f); |
|
} |
|
|
|
|
|
__device__ float hardtan_gradient_kernel(float x) |
|
{ |
|
if (x > -1 && x < 1) return 1; |
|
return 0; |
|
} |
|
__device__ float linear_gradient_kernel(float x){return 1;} |
|
__device__ float logistic_gradient_kernel(float x){return (1-x)*x;} |
|
__device__ float loggy_gradient_kernel(float x) |
|
{ |
|
float y = (x+1.F)/2.F; |
|
return 2*(1-y)*y; |
|
} |
|
__device__ float relu_gradient_kernel(float x){return (x>0);} |
|
__device__ float elu_gradient_kernel(float x){return (x >= 0) + (x < 0)*(x + 1);} |
|
__device__ float selu_gradient_kernel(float x) { return (x >= 0)*1.0507f + (x < 0)*(x + 1.0507f*1.6732f); } |
|
__device__ float relie_gradient_kernel(float x){return (x>0) ? 1 : .01f;} |
|
__device__ float ramp_gradient_kernel(float x){return (x>0)+.1f;} |
|
__device__ float leaky_gradient_kernel(float x){return (x>0) ? 1 : .1f;} |
|
__device__ float tanh_gradient_kernel(float x){return 1-x*x;} |
|
__device__ float plse_gradient_kernel(float x){return (x < 0 || x > 1) ? .01f : .125f;} |
|
__device__ float stair_gradient_kernel(float x) |
|
{ |
|
if (floor(x) == x) return 0; |
|
return 1; |
|
} |
|
|
|
__device__ float activate_kernel(float x, ACTIVATION a) |
|
{ |
|
switch(a){ |
|
case LINEAR: |
|
return linear_activate_kernel(x); |
|
case LOGISTIC: |
|
return logistic_activate_kernel(x); |
|
case LOGGY: |
|
return loggy_activate_kernel(x); |
|
case RELU: |
|
return relu_activate_kernel(x); |
|
case ELU: |
|
return elu_activate_kernel(x); |
|
case SELU: |
|
return selu_activate_kernel(x); |
|
case RELIE: |
|
return relie_activate_kernel(x); |
|
case RAMP: |
|
return ramp_activate_kernel(x); |
|
case LEAKY: |
|
return leaky_activate_kernel(x); |
|
case TANH: |
|
return tanh_activate_kernel(x); |
|
case PLSE: |
|
return plse_activate_kernel(x); |
|
case STAIR: |
|
return stair_activate_kernel(x); |
|
case HARDTAN: |
|
return hardtan_activate_kernel(x); |
|
case LHTAN: |
|
return lhtan_activate_kernel(x); |
|
} |
|
return 0; |
|
} |
|
|
|
__device__ float gradient_kernel(float x, ACTIVATION a) |
|
{ |
|
switch (a) { |
|
case LINEAR: |
|
return linear_gradient_kernel(x); |
|
case LOGISTIC: |
|
return logistic_gradient_kernel(x); |
|
case LOGGY: |
|
return loggy_gradient_kernel(x); |
|
case RELU: |
|
return relu_gradient_kernel(x); |
|
case NORM_CHAN: |
|
return relu_gradient_kernel(x); |
|
case ELU: |
|
return elu_gradient_kernel(x); |
|
case SELU: |
|
return selu_gradient_kernel(x); |
|
case RELIE: |
|
return relie_gradient_kernel(x); |
|
case RAMP: |
|
return ramp_gradient_kernel(x); |
|
case LEAKY: |
|
return leaky_gradient_kernel(x); |
|
case TANH: |
|
return tanh_gradient_kernel(x); |
|
case PLSE: |
|
return plse_gradient_kernel(x); |
|
case STAIR: |
|
return stair_gradient_kernel(x); |
|
case HARDTAN: |
|
return hardtan_gradient_kernel(x); |
|
case LHTAN: |
|
return lhtan_gradient_kernel(x); |
|
} |
|
return 0; |
|
} |
|
|
|
__global__ void binary_gradient_array_kernel(float *x, float *dy, int n, int s, BINARY_ACTIVATION a, float *dx) |
|
{ |
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
|
int i = id % s; |
|
int b = id / s; |
|
float x1 = x[b*s + i]; |
|
float x2 = x[b*s + s / 2 + i]; |
|
if (id < n) { |
|
float de = dy[id]; |
|
dx[b*s + i] = x2*de; |
|
dx[b*s + s / 2 + i] = x1*de; |
|
} |
|
} |
|
|
|
extern "C" void binary_gradient_array_gpu(float *x, float *dx, int n, int size, BINARY_ACTIVATION a, float *y) |
|
{ |
|
binary_gradient_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, dx, n / 2, size, a, y); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
__global__ void binary_activate_array_kernel(float *x, int n, int s, BINARY_ACTIVATION a, float *y) |
|
{ |
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
|
int i = id % s; |
|
int b = id / s; |
|
float x1 = x[b*s + i]; |
|
float x2 = x[b*s + s / 2 + i]; |
|
if (id < n) y[id] = x1*x2; |
|
} |
|
|
|
extern "C" void binary_activate_array_gpu(float *x, int n, int size, BINARY_ACTIVATION a, float *y) |
|
{ |
|
binary_activate_array_kernel << <cuda_gridsize(n / 2), BLOCK, 0, get_cuda_stream() >> >(x, n / 2, size, a, y); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
|
|
__global__ void activate_array_kernel(float *x, int n, ACTIVATION a) |
|
{ |
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
|
if(i < n) x[i] = activate_kernel(x[i], a); |
|
} |
|
|
|
|
|
|
|
__global__ void activate_array_swish_kernel(float *x, int n, float *output_sigmoid_gpu, float *output_gpu) |
|
{ |
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
|
if (i < n) { |
|
float x_val = x[i]; |
|
float sigmoid = logistic_activate_kernel(x_val); |
|
output_sigmoid_gpu[i] = sigmoid; |
|
output_gpu[i] = x_val * sigmoid; |
|
} |
|
} |
|
|
|
// https://github.com/digantamisra98/Mish |
|
__global__ void activate_array_mish_kernel(float *x, int n, float *activation_input, float *output_gpu) |
|
{ |
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
|
if (i < n) { |
|
const float MISH_THRESHOLD = 20; |
|
float x_val = x[i]; |
|
activation_input[i] = x_val; // store value before activation |
|
//output_gpu[i] = x_val * tanh_activate_kernel(logf(1 + expf(x_val))); |
|
|
|
// Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L17-L20 |
|
// TF: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L40-L49 |
|
// log1p(x) == log(x + 1) |
|
output_gpu[i] = x_val * tanh_activate_kernel( softplus_kernel(x_val, MISH_THRESHOLD) ); |
|
} |
|
} |
|
|
|
__global__ void activate_array_leaky_kernel(float *x, int n) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
x[index] = leaky_activate_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void activate_array_selu_kernel(float *x, int n) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
x[index] = selu_activate_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void activate_array_logistic_kernel(float *x, int n) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
x[index] = logistic_activate_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void activate_array_tanh_kernel(float *x, int n) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
x[index] = tanh_activate_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void activate_array_hardtan_kernel(float *x, int n) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
x[index] = hardtan_activate_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void activate_array_relu_kernel(float *x, int n) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
x[index] = relu_activate_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void gradient_array_kernel(float *x, int n, ACTIVATION a, float *delta) |
|
{ |
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
|
if(i < n) delta[i] *= gradient_kernel(x[i], a); |
|
} |
|
|
|
// https://github.com/BVLC/caffe/blob/04ab089db018a292ae48d51732dd6c66766b36b6/src/caffe/layers/swish_layer.cu#L28-L30 |
|
__global__ void gradient_array_swish_kernel(float *x, int n, float *sigmoid_gpu, float *delta) |
|
{ |
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
|
if (i < n) { |
|
float swish = x[i]; |
|
delta[i] *= swish + sigmoid_gpu[i] * (1 - swish); // gradient_kernel(x[i], a); |
|
} |
|
} |
|
|
|
// https://github.com/digantamisra98/Mish |
|
__global__ void gradient_array_mish_kernel(int n, float *activation_input_gpu, float *delta) |
|
{ |
|
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
|
if (i < n) { |
|
const float MISH_THRESHOLD = 20.0f; |
|
|
|
// implementation from TensorFlow: https://github.com/tensorflow/addons/blob/093cdfa85d334cbe19a37624c33198f3140109ed/tensorflow_addons/custom_ops/activations/cc/kernels/mish_op.h#L66-L80 |
|
// implementation from Pytorch: https://github.com/thomasbrandon/mish-cuda/blob/master/csrc/mish.h#L26-L31 |
|
// log1p(x) == log(x + 1) |
|
const float inp = activation_input_gpu[i]; |
|
const float sp = softplus_kernel(inp, MISH_THRESHOLD); |
|
const float grad_sp = 1 - expf(-sp); |
|
const float tsp = tanh(sp); |
|
const float grad_tsp = (1 - tsp*tsp) * grad_sp; |
|
const float grad = inp * grad_tsp + tsp; |
|
delta[i] *= grad; |
|
|
|
//float x = activation_input[i]; |
|
//float d = 2 * expf(x) + expf(2 * x) + 2; |
|
//float w = 4 * (x + 1) + 4 * expf(2 * x) + expf(3 * x) + expf(x)*(4 * x + 6); |
|
//float derivative = expf(x) * w / (d * d); |
|
//delta[i] *= derivative; |
|
} |
|
} |
|
|
|
__global__ void gradient_array_leaky_kernel(float *x, int n, float *delta) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
delta[index] *= leaky_gradient_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void gradient_array_selu_kernel(float *x, int n, float *delta) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
delta[index] *= selu_gradient_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void gradient_array_logistic_kernel(float *x, int n, float *delta) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
delta[index] *= logistic_gradient_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void gradient_array_tanh_kernel(float *x, int n, float *delta) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
delta[index] *= tanh_gradient_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void gradient_array_hardtan_kernel(float *x, int n, float *delta) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
delta[index] *= hardtan_gradient_kernel(x[index]); |
|
} |
|
} |
|
|
|
__global__ void gradient_array_relu_kernel(float *x, int n, float *delta) |
|
{ |
|
int index = blockIdx.x*blockDim.x + threadIdx.x; |
|
if (index < n) { |
|
delta[index] *= relu_gradient_kernel(x[index]); |
|
} |
|
} |
|
|
|
extern "C" void activate_array_ongpu(float *x, int n, ACTIVATION a) |
|
{ |
|
const int num_blocks = get_number_of_blocks(n, BLOCK); |
|
if (a == LINEAR) return; |
|
else if(a == LEAKY) activate_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
|
else if (a == LOGISTIC) activate_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
|
else if (a == TANH) activate_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
|
else if (a == HARDTAN) activate_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
|
else if (a == RELU) activate_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
|
else if (a == SELU) activate_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n); |
|
else |
|
activate_array_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream()>>>(x, n, a); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
|
|
extern "C" void activate_array_swish_ongpu(float *x, int n, float *output_sigmoid_gpu, float *output_gpu) |
|
{ |
|
const int num_blocks = get_number_of_blocks(n, BLOCK); |
|
activate_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, output_sigmoid_gpu, output_gpu); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
|
|
extern "C" void activate_array_mish_ongpu(float *x, int n, float *activation_input_gpu, float *output_gpu) |
|
{ |
|
const int num_blocks = get_number_of_blocks(n, BLOCK); |
|
activate_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(x, n, activation_input_gpu, output_gpu); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
|
|
extern "C" void gradient_array_ongpu(float *x, int n, ACTIVATION a, float *delta) |
|
{ |
|
const int num_blocks = get_number_of_blocks(n, BLOCK); |
|
if (a == LINEAR) return; |
|
else if (a == LEAKY) gradient_array_leaky_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
|
else if (a == LOGISTIC) gradient_array_logistic_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
|
else if (a == TANH) gradient_array_tanh_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
|
else if (a == HARDTAN) gradient_array_hardtan_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
|
else if (a == RELU) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
|
//else if (a == NORM_CHAN) gradient_array_relu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
|
else if (a == NORM_CHAN_SOFTMAX || a == NORM_CHAN) { |
|
printf(" Error: should be used custom NORM_CHAN_SOFTMAX-function for gradient \n"); |
|
exit(0); |
|
} |
|
else if (a == SELU) gradient_array_selu_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(x, n, delta); |
|
else |
|
gradient_array_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, a, delta); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
|
|
|
|
extern "C" void gradient_array_swish_ongpu(float *x, int n, float *sigmoid_gpu, float *delta) |
|
{ |
|
const int num_blocks = get_number_of_blocks(n, BLOCK); |
|
gradient_array_swish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (x, n, sigmoid_gpu, delta); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
|
|
extern "C" void gradient_array_mish_ongpu(int n, float *activation_input_gpu, float *delta) |
|
{ |
|
const int num_blocks = get_number_of_blocks(n, BLOCK); |
|
gradient_array_mish_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> > (n, activation_input_gpu, delta); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
|
|
|
|
__global__ void activate_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu) |
|
{ |
|
int i = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
int wh_i = i % wh_step; |
|
int b = i / wh_step; |
|
|
|
const float eps = 0.0001; |
|
if (i < size) { |
|
float sum = eps; |
|
int k; |
|
for (k = 0; k < channels; ++k) { |
|
float val = x[wh_i + k * wh_step + b*wh_step*channels]; |
|
if (val > 0) sum += val; |
|
} |
|
for (k = 0; k < channels; ++k) { |
|
float val = x[wh_i + k * wh_step + b*wh_step*channels]; |
|
if (val > 0) val = val / sum; |
|
else val = 0; |
|
output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val; |
|
} |
|
} |
|
} |
|
|
|
extern "C" void activate_array_normalize_channels_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu) |
|
{ |
|
// n = w*h*c*batch |
|
// size = w*h*batch |
|
int size = n / channels; |
|
|
|
const int num_blocks = get_number_of_blocks(size, BLOCK); |
|
|
|
activate_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
|
|
|
|
|
|
__global__ void activate_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *output_gpu, int use_max_val) |
|
{ |
|
int i = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
int wh_i = i % wh_step; |
|
int b = i / wh_step; |
|
|
|
const float eps = 0.0001; |
|
if (i < size) { |
|
float sum = eps; |
|
float max_val = -FLT_MAX; |
|
int k; |
|
if (use_max_val) { |
|
for (k = 0; k < channels; ++k) { |
|
float val = x[wh_i + k * wh_step + b*wh_step*channels]; |
|
if (val > max_val) max_val = val; |
|
} |
|
} |
|
else |
|
max_val = 0; |
|
|
|
for (k = 0; k < channels; ++k) { |
|
float val = x[wh_i + k * wh_step + b*wh_step*channels]; |
|
sum += expf(val - max_val); |
|
} |
|
for (k = 0; k < channels; ++k) { |
|
float val = x[wh_i + k * wh_step + b*wh_step*channels]; |
|
val = expf(val - max_val) / sum; |
|
output_gpu[wh_i + k * wh_step + b*wh_step*channels] = val; |
|
} |
|
} |
|
} |
|
|
|
extern "C" void activate_array_normalize_channels_softmax_ongpu(float *x, int n, int batch, int channels, int wh_step, float *output_gpu, int use_max_val) |
|
{ |
|
// n = w*h*c*batch |
|
// size = w*h*batch |
|
int size = n / channels; |
|
|
|
const int num_blocks = get_number_of_blocks(size, BLOCK); |
|
|
|
activate_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (x, size, batch, channels, wh_step, output_gpu, use_max_val); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
|
|
|
|
|
|
__global__ void gradient_array_normalize_channels_softmax_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu) |
|
{ |
|
int i = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
int wh_i = i % wh_step; |
|
int b = i / wh_step; |
|
|
|
if (i < size) { |
|
float grad = 0; |
|
int k; |
|
for (k = 0; k < channels; ++k) { |
|
const int index = wh_i + k * wh_step + b*wh_step*channels; |
|
float out = x[index]; |
|
float delta = delta_gpu[index]; |
|
grad += out*delta; |
|
} |
|
for (k = 0; k < channels; ++k) { |
|
const int index = wh_i + k * wh_step + b*wh_step*channels; |
|
float delta = delta_gpu[index]; |
|
delta = delta * grad; |
|
delta_gpu[index] = delta; |
|
} |
|
} |
|
} |
|
|
|
extern "C" void gradient_array_normalize_channels_softmax_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu) |
|
{ |
|
// n = w*h*c*batch |
|
// size = w*h*batch |
|
int size = n / channels; |
|
|
|
const int num_blocks = get_number_of_blocks(size, BLOCK); |
|
|
|
gradient_array_normalize_channels_softmax_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
|
|
|
|
__global__ void gradient_array_normalize_channels_kernel(float *x, int size, int batch, int channels, int wh_step, float *delta_gpu) |
|
{ |
|
int i = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
|
int wh_i = i % wh_step; |
|
int b = i / wh_step; |
|
|
|
if (i < size) { |
|
float grad = 0; |
|
int k; |
|
for (k = 0; k < channels; ++k) { |
|
const int index = wh_i + k * wh_step + b*wh_step*channels; |
|
float out = x[index]; |
|
float delta = delta_gpu[index]; |
|
grad += out*delta; |
|
} |
|
for (k = 0; k < channels; ++k) { |
|
const int index = wh_i + k * wh_step + b*wh_step*channels; |
|
if (x[index] > 0) { |
|
float delta = delta_gpu[index]; |
|
delta = delta * grad; |
|
delta_gpu[index] = delta; |
|
} |
|
} |
|
} |
|
} |
|
|
|
extern "C" void gradient_array_normalize_channels_ongpu(float *output_gpu, int n, int batch, int channels, int wh_step, float *delta_gpu) |
|
{ |
|
// n = w*h*c*batch |
|
// size = w*h*batch |
|
int size = n / channels; |
|
|
|
const int num_blocks = get_number_of_blocks(size, BLOCK); |
|
|
|
gradient_array_normalize_channels_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (output_gpu, size, batch, channels, wh_step, delta_gpu); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |