mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1795 lines
66 KiB
1795 lines
66 KiB
#include <stdio.h> |
|
#include <string.h> |
|
#include <stdlib.h> |
|
#include <stdint.h> |
|
|
|
#include "activation_layer.h" |
|
#include "activations.h" |
|
#include "assert.h" |
|
#include "avgpool_layer.h" |
|
#include "batchnorm_layer.h" |
|
#include "blas.h" |
|
#include "connected_layer.h" |
|
#include "convolutional_layer.h" |
|
#include "cost_layer.h" |
|
#include "crnn_layer.h" |
|
#include "crop_layer.h" |
|
#include "detection_layer.h" |
|
#include "dropout_layer.h" |
|
#include "gru_layer.h" |
|
#include "list.h" |
|
#include "local_layer.h" |
|
#include "lstm_layer.h" |
|
#include "conv_lstm_layer.h" |
|
#include "maxpool_layer.h" |
|
#include "normalization_layer.h" |
|
#include "option_list.h" |
|
#include "parser.h" |
|
#include "region_layer.h" |
|
#include "reorg_layer.h" |
|
#include "reorg_old_layer.h" |
|
#include "rnn_layer.h" |
|
#include "route_layer.h" |
|
#include "shortcut_layer.h" |
|
#include "scale_channels_layer.h" |
|
#include "sam_layer.h" |
|
#include "softmax_layer.h" |
|
#include "utils.h" |
|
#include "upsample_layer.h" |
|
#include "version.h" |
|
#include "yolo_layer.h" |
|
#include "gaussian_yolo_layer.h" |
|
|
|
typedef struct{ |
|
char *type; |
|
list *options; |
|
}section; |
|
|
|
list *read_cfg(char *filename); |
|
|
|
LAYER_TYPE string_to_layer_type(char * type) |
|
{ |
|
|
|
if (strcmp(type, "[shortcut]")==0) return SHORTCUT; |
|
if (strcmp(type, "[scale_channels]") == 0) return SCALE_CHANNELS; |
|
if (strcmp(type, "[sam]") == 0) return SAM; |
|
if (strcmp(type, "[crop]")==0) return CROP; |
|
if (strcmp(type, "[cost]")==0) return COST; |
|
if (strcmp(type, "[detection]")==0) return DETECTION; |
|
if (strcmp(type, "[region]")==0) return REGION; |
|
if (strcmp(type, "[yolo]") == 0) return YOLO; |
|
if (strcmp(type, "[Gaussian_yolo]") == 0) return GAUSSIAN_YOLO; |
|
if (strcmp(type, "[local]")==0) return LOCAL; |
|
if (strcmp(type, "[conv]")==0 |
|
|| strcmp(type, "[convolutional]")==0) return CONVOLUTIONAL; |
|
if (strcmp(type, "[activation]")==0) return ACTIVE; |
|
if (strcmp(type, "[net]")==0 |
|
|| strcmp(type, "[network]")==0) return NETWORK; |
|
if (strcmp(type, "[crnn]")==0) return CRNN; |
|
if (strcmp(type, "[gru]")==0) return GRU; |
|
if (strcmp(type, "[lstm]")==0) return LSTM; |
|
if (strcmp(type, "[conv_lstm]") == 0) return CONV_LSTM; |
|
if (strcmp(type, "[rnn]")==0) return RNN; |
|
if (strcmp(type, "[conn]")==0 |
|
|| strcmp(type, "[connected]")==0) return CONNECTED; |
|
if (strcmp(type, "[max]")==0 |
|
|| strcmp(type, "[maxpool]")==0) return MAXPOOL; |
|
if (strcmp(type, "[reorg3d]")==0) return REORG; |
|
if (strcmp(type, "[reorg]") == 0) return REORG_OLD; |
|
if (strcmp(type, "[avg]")==0 |
|
|| strcmp(type, "[avgpool]")==0) return AVGPOOL; |
|
if (strcmp(type, "[dropout]")==0) return DROPOUT; |
|
if (strcmp(type, "[lrn]")==0 |
|
|| strcmp(type, "[normalization]")==0) return NORMALIZATION; |
|
if (strcmp(type, "[batchnorm]")==0) return BATCHNORM; |
|
if (strcmp(type, "[soft]")==0 |
|
|| strcmp(type, "[softmax]")==0) return SOFTMAX; |
|
if (strcmp(type, "[route]")==0) return ROUTE; |
|
if (strcmp(type, "[upsample]") == 0) return UPSAMPLE; |
|
if (strcmp(type, "[empty]") == 0) return EMPTY; |
|
return BLANK; |
|
} |
|
|
|
void free_section(section *s) |
|
{ |
|
free(s->type); |
|
node *n = s->options->front; |
|
while(n){ |
|
kvp *pair = (kvp *)n->val; |
|
free(pair->key); |
|
free(pair); |
|
node *next = n->next; |
|
free(n); |
|
n = next; |
|
} |
|
free(s->options); |
|
free(s); |
|
} |
|
|
|
void parse_data(char *data, float *a, int n) |
|
{ |
|
int i; |
|
if(!data) return; |
|
char *curr = data; |
|
char *next = data; |
|
int done = 0; |
|
for(i = 0; i < n && !done; ++i){ |
|
while(*++next !='\0' && *next != ','); |
|
if(*next == '\0') done = 1; |
|
*next = '\0'; |
|
sscanf(curr, "%g", &a[i]); |
|
curr = next+1; |
|
} |
|
} |
|
|
|
typedef struct size_params{ |
|
int batch; |
|
int inputs; |
|
int h; |
|
int w; |
|
int c; |
|
int index; |
|
int time_steps; |
|
int train; |
|
network net; |
|
} size_params; |
|
|
|
local_layer parse_local(list *options, size_params params) |
|
{ |
|
int n = option_find_int(options, "filters",1); |
|
int size = option_find_int(options, "size",1); |
|
int stride = option_find_int(options, "stride",1); |
|
int pad = option_find_int(options, "pad",0); |
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) error("Layer before local layer must output image."); |
|
|
|
local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation); |
|
|
|
return layer; |
|
} |
|
|
|
convolutional_layer parse_convolutional(list *options, size_params params) |
|
{ |
|
int n = option_find_int(options, "filters",1); |
|
int groups = option_find_int_quiet(options, "groups", 1); |
|
int size = option_find_int(options, "size",1); |
|
int stride = -1; |
|
//int stride = option_find_int(options, "stride",1); |
|
int stride_x = option_find_int_quiet(options, "stride_x", -1); |
|
int stride_y = option_find_int_quiet(options, "stride_y", -1); |
|
if (stride_x < 1 || stride_y < 1) { |
|
stride = option_find_int(options, "stride", 1); |
|
if (stride_x < 1) stride_x = stride; |
|
if (stride_y < 1) stride_y = stride; |
|
} |
|
else { |
|
stride = option_find_int_quiet(options, "stride", 1); |
|
} |
|
int dilation = option_find_int_quiet(options, "dilation", 1); |
|
int antialiasing = option_find_int_quiet(options, "antialiasing", 0); |
|
if (size == 1) dilation = 1; |
|
int pad = option_find_int_quiet(options, "pad",0); |
|
int padding = option_find_int_quiet(options, "padding",0); |
|
if(pad) padding = size/2; |
|
|
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
int assisted_excitation = option_find_float_quiet(options, "assisted_excitation", 0); |
|
|
|
int share_index = option_find_int_quiet(options, "share_index", -1000000000); |
|
convolutional_layer *share_layer = NULL; |
|
if(share_index >= 0) share_layer = ¶ms.net.layers[share_index]; |
|
else if(share_index != -1000000000) share_layer = ¶ms.net.layers[params.index + share_index]; |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) error("Layer before convolutional layer must output image."); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
int binary = option_find_int_quiet(options, "binary", 0); |
|
int xnor = option_find_int_quiet(options, "xnor", 0); |
|
int use_bin_output = option_find_int_quiet(options, "bin_output", 0); |
|
|
|
convolutional_layer layer = make_convolutional_layer(batch,1,h,w,c,n,groups,size,stride_x,stride_y,dilation,padding,activation, batch_normalize, binary, xnor, params.net.adam, use_bin_output, params.index, antialiasing, share_layer, assisted_excitation, params.train); |
|
layer.flipped = option_find_int_quiet(options, "flipped", 0); |
|
layer.dot = option_find_float_quiet(options, "dot", 0); |
|
|
|
|
|
if(params.net.adam){ |
|
layer.B1 = params.net.B1; |
|
layer.B2 = params.net.B2; |
|
layer.eps = params.net.eps; |
|
} |
|
|
|
return layer; |
|
} |
|
|
|
layer parse_crnn(list *options, size_params params) |
|
{ |
|
int size = option_find_int_quiet(options, "size", 3); |
|
int stride = option_find_int_quiet(options, "stride", 1); |
|
int dilation = option_find_int_quiet(options, "dilation", 1); |
|
int pad = option_find_int_quiet(options, "pad", 0); |
|
int padding = option_find_int_quiet(options, "padding", 0); |
|
if (pad) padding = size / 2; |
|
|
|
int output_filters = option_find_int(options, "output",1); |
|
int hidden_filters = option_find_int(options, "hidden",1); |
|
int groups = option_find_int_quiet(options, "groups", 1); |
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
int xnor = option_find_int_quiet(options, "xnor", 0); |
|
|
|
layer l = make_crnn_layer(params.batch, params.h, params.w, params.c, hidden_filters, output_filters, groups, params.time_steps, size, stride, dilation, padding, activation, batch_normalize, xnor, params.train); |
|
|
|
l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
|
|
|
return l; |
|
} |
|
|
|
layer parse_rnn(list *options, size_params params) |
|
{ |
|
int output = option_find_int(options, "output",1); |
|
int hidden = option_find_int(options, "hidden",1); |
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
int logistic = option_find_int_quiet(options, "logistic", 0); |
|
|
|
layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic); |
|
|
|
l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
|
|
|
return l; |
|
} |
|
|
|
layer parse_gru(list *options, size_params params) |
|
{ |
|
int output = option_find_int(options, "output",1); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
|
|
layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize); |
|
|
|
return l; |
|
} |
|
|
|
layer parse_lstm(list *options, size_params params) |
|
{ |
|
int output = option_find_int(options, "output",1); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
|
|
layer l = make_lstm_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize); |
|
|
|
return l; |
|
} |
|
|
|
layer parse_conv_lstm(list *options, size_params params) |
|
{ |
|
// a ConvLSTM with a larger transitional kernel should be able to capture faster motions |
|
int size = option_find_int_quiet(options, "size", 3); |
|
int stride = option_find_int_quiet(options, "stride", 1); |
|
int dilation = option_find_int_quiet(options, "dilation", 1); |
|
int pad = option_find_int_quiet(options, "pad", 0); |
|
int padding = option_find_int_quiet(options, "padding", 0); |
|
if (pad) padding = size / 2; |
|
|
|
int output_filters = option_find_int(options, "output", 1); |
|
int groups = option_find_int_quiet(options, "groups", 1); |
|
char *activation_s = option_find_str(options, "activation", "LINEAR"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
int xnor = option_find_int_quiet(options, "xnor", 0); |
|
int peephole = option_find_int_quiet(options, "peephole", 0); |
|
|
|
layer l = make_conv_lstm_layer(params.batch, params.h, params.w, params.c, output_filters, groups, params.time_steps, size, stride, dilation, padding, activation, batch_normalize, peephole, xnor, params.train); |
|
|
|
l.state_constrain = option_find_int_quiet(options, "state_constrain", params.time_steps * 32); |
|
l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
|
|
|
return l; |
|
} |
|
|
|
connected_layer parse_connected(list *options, size_params params) |
|
{ |
|
int output = option_find_int(options, "output",1); |
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
|
|
|
connected_layer layer = make_connected_layer(params.batch, 1, params.inputs, output, activation, batch_normalize); |
|
|
|
return layer; |
|
} |
|
|
|
softmax_layer parse_softmax(list *options, size_params params) |
|
{ |
|
int groups = option_find_int_quiet(options, "groups", 1); |
|
softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); |
|
layer.temperature = option_find_float_quiet(options, "temperature", 1); |
|
char *tree_file = option_find_str(options, "tree", 0); |
|
if (tree_file) layer.softmax_tree = read_tree(tree_file); |
|
layer.w = params.w; |
|
layer.h = params.h; |
|
layer.c = params.c; |
|
layer.spatial = option_find_float_quiet(options, "spatial", 0); |
|
layer.noloss = option_find_int_quiet(options, "noloss", 0); |
|
return layer; |
|
} |
|
|
|
int *parse_yolo_mask(char *a, int *num) |
|
{ |
|
int *mask = 0; |
|
if (a) { |
|
int len = strlen(a); |
|
int n = 1; |
|
int i; |
|
for (i = 0; i < len; ++i) { |
|
if (a[i] == ',') ++n; |
|
} |
|
mask = (int*)calloc(n, sizeof(int)); |
|
for (i = 0; i < n; ++i) { |
|
int val = atoi(a); |
|
mask[i] = val; |
|
a = strchr(a, ',') + 1; |
|
} |
|
*num = n; |
|
} |
|
return mask; |
|
} |
|
|
|
layer parse_yolo(list *options, size_params params) |
|
{ |
|
int classes = option_find_int(options, "classes", 20); |
|
int total = option_find_int(options, "num", 1); |
|
int num = total; |
|
|
|
char *a = option_find_str(options, "mask", 0); |
|
int *mask = parse_yolo_mask(a, &num); |
|
int max_boxes = option_find_int_quiet(options, "max", 90); |
|
layer l = make_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes, max_boxes); |
|
if (l.outputs != params.inputs) { |
|
printf("Error: l.outputs == params.inputs \n"); |
|
printf("filters= in the [convolutional]-layer doesn't correspond to classes= or mask= in [yolo]-layer \n"); |
|
exit(EXIT_FAILURE); |
|
} |
|
//assert(l.outputs == params.inputs); |
|
|
|
l.label_smooth_eps = option_find_float_quiet(options, "label_smooth_eps", 0.0f); |
|
l.scale_x_y = option_find_float_quiet(options, "scale_x_y", 1); |
|
l.iou_normalizer = option_find_float_quiet(options, "iou_normalizer", 0.75); |
|
l.cls_normalizer = option_find_float_quiet(options, "cls_normalizer", 1); |
|
char *iou_loss = option_find_str_quiet(options, "iou_loss", "mse"); // "iou"); |
|
|
|
if (strcmp(iou_loss, "mse") == 0) l.iou_loss = MSE; |
|
else if (strcmp(iou_loss, "giou") == 0) l.iou_loss = GIOU; |
|
else if (strcmp(iou_loss, "diou") == 0) l.iou_loss = DIOU; |
|
else if (strcmp(iou_loss, "ciou") == 0) l.iou_loss = CIOU; |
|
else l.iou_loss = IOU; |
|
fprintf(stderr, "[yolo] params: iou loss: %s (%d), iou_norm: %2.2f, cls_norm: %2.2f, scale_x_y: %2.2f\n", |
|
iou_loss, l.iou_loss, l.iou_normalizer, l.cls_normalizer, l.scale_x_y); |
|
|
|
l.beta_nms = option_find_float_quiet(options, "beta_nms", 0.6); |
|
char *nms_kind = option_find_str_quiet(options, "nms_kind", "default"); |
|
if (strcmp(nms_kind, "default") == 0) l.nms_kind = DEFAULT_NMS; |
|
else { |
|
if (strcmp(nms_kind, "greedynms") == 0) l.nms_kind = GREEDY_NMS; |
|
else if (strcmp(nms_kind, "diounms") == 0) l.nms_kind = DIOU_NMS; |
|
else l.nms_kind = DEFAULT_NMS; |
|
printf("nms_kind: %s (%d), beta = %f \n", nms_kind, l.nms_kind, l.beta_nms); |
|
} |
|
|
|
l.jitter = option_find_float(options, "jitter", .2); |
|
l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); |
|
|
|
l.ignore_thresh = option_find_float(options, "ignore_thresh", .5); |
|
l.truth_thresh = option_find_float(options, "truth_thresh", 1); |
|
l.iou_thresh = option_find_float_quiet(options, "iou_thresh", 1); // recommended to use iou_thresh=0.213 in [yolo] |
|
l.random = option_find_int_quiet(options, "random", 0); |
|
|
|
char *map_file = option_find_str(options, "map", 0); |
|
if (map_file) l.map = read_map(map_file); |
|
|
|
a = option_find_str(options, "anchors", 0); |
|
if (a) { |
|
int len = strlen(a); |
|
int n = 1; |
|
int i; |
|
for (i = 0; i < len; ++i) { |
|
if (a[i] == ',') ++n; |
|
} |
|
for (i = 0; i < n && i < total*2; ++i) { |
|
float bias = atof(a); |
|
l.biases[i] = bias; |
|
a = strchr(a, ',') + 1; |
|
} |
|
} |
|
return l; |
|
} |
|
|
|
|
|
int *parse_gaussian_yolo_mask(char *a, int *num) // Gaussian_YOLOv3 |
|
{ |
|
int *mask = 0; |
|
if (a) { |
|
int len = strlen(a); |
|
int n = 1; |
|
int i; |
|
for (i = 0; i < len; ++i) { |
|
if (a[i] == ',') ++n; |
|
} |
|
mask = (int *)calloc(n, sizeof(int)); |
|
for (i = 0; i < n; ++i) { |
|
int val = atoi(a); |
|
mask[i] = val; |
|
a = strchr(a, ',') + 1; |
|
} |
|
*num = n; |
|
} |
|
return mask; |
|
} |
|
|
|
|
|
layer parse_gaussian_yolo(list *options, size_params params) // Gaussian_YOLOv3 |
|
{ |
|
int classes = option_find_int(options, "classes", 20); |
|
int max_boxes = option_find_int_quiet(options, "max", 90); |
|
int total = option_find_int(options, "num", 1); |
|
int num = total; |
|
|
|
char *a = option_find_str(options, "mask", 0); |
|
int *mask = parse_gaussian_yolo_mask(a, &num); |
|
layer l = make_gaussian_yolo_layer(params.batch, params.w, params.h, num, total, mask, classes, max_boxes); |
|
if (l.outputs != params.inputs) { |
|
printf("Error: l.outputs == params.inputs \n"); |
|
printf("filters= in the [convolutional]-layer doesn't correspond to classes= or mask= in [Gaussian_yolo]-layer \n"); |
|
exit(EXIT_FAILURE); |
|
} |
|
//assert(l.outputs == params.inputs); |
|
|
|
l.label_smooth_eps = option_find_float_quiet(options, "label_smooth_eps", 0.0f); |
|
l.scale_x_y = option_find_float_quiet(options, "scale_x_y", 1); |
|
l.uc_normalizer = option_find_float_quiet(options, "uc_normalizer", 1.0); |
|
l.iou_normalizer = option_find_float_quiet(options, "iou_normalizer", 0.75); |
|
l.cls_normalizer = option_find_float_quiet(options, "cls_normalizer", 1.0); |
|
char *iou_loss = option_find_str_quiet(options, "iou_loss", "mse"); // "iou"); |
|
|
|
if (strcmp(iou_loss, "mse") == 0) l.iou_loss = MSE; |
|
else if (strcmp(iou_loss, "giou") == 0) l.iou_loss = GIOU; |
|
else if (strcmp(iou_loss, "diou") == 0) l.iou_loss = DIOU; |
|
else if (strcmp(iou_loss, "ciou") == 0) l.iou_loss = CIOU; |
|
else l.iou_loss = IOU; |
|
|
|
l.beta_nms = option_find_float_quiet(options, "beta_nms", 0.6); |
|
char *nms_kind = option_find_str_quiet(options, "nms_kind", "default"); |
|
if (strcmp(nms_kind, "default") == 0) l.nms_kind = DEFAULT_NMS; |
|
else { |
|
if (strcmp(nms_kind, "greedynms") == 0) l.nms_kind = GREEDY_NMS; |
|
else if (strcmp(nms_kind, "diounms") == 0) l.nms_kind = DIOU_NMS; |
|
else if (strcmp(nms_kind, "cornersnms") == 0) l.nms_kind = CORNERS_NMS; |
|
else l.nms_kind = DEFAULT_NMS; |
|
printf("nms_kind: %s (%d), beta = %f \n", nms_kind, l.nms_kind, l.beta_nms); |
|
} |
|
|
|
char *yolo_point = option_find_str_quiet(options, "yolo_point", "center"); |
|
if (strcmp(yolo_point, "left_top") == 0) l.yolo_point = YOLO_LEFT_TOP; |
|
else if (strcmp(yolo_point, "right_bottom") == 0) l.yolo_point = YOLO_RIGHT_BOTTOM; |
|
else l.yolo_point = YOLO_CENTER; |
|
|
|
fprintf(stderr, "[Gaussian_yolo] iou loss: %s (%d), iou_norm: %2.2f, cls_norm: %2.2f, scale: %2.2f, point: %d\n", |
|
iou_loss, l.iou_loss, l.iou_normalizer, l.cls_normalizer, l.scale_x_y, l.yolo_point); |
|
|
|
l.jitter = option_find_float(options, "jitter", .2); |
|
|
|
l.ignore_thresh = option_find_float(options, "ignore_thresh", .5); |
|
l.truth_thresh = option_find_float(options, "truth_thresh", 1); |
|
l.iou_thresh = option_find_float_quiet(options, "iou_thresh", 1); // recommended to use iou_thresh=0.213 in [yolo] |
|
l.random = option_find_int_quiet(options, "random", 0); |
|
|
|
char *map_file = option_find_str(options, "map", 0); |
|
if (map_file) l.map = read_map(map_file); |
|
|
|
a = option_find_str(options, "anchors", 0); |
|
if (a) { |
|
int len = strlen(a); |
|
int n = 1; |
|
int i; |
|
for (i = 0; i < len; ++i) { |
|
if (a[i] == ',') ++n; |
|
} |
|
for (i = 0; i < n; ++i) { |
|
float bias = atof(a); |
|
l.biases[i] = bias; |
|
a = strchr(a, ',') + 1; |
|
} |
|
} |
|
return l; |
|
} |
|
|
|
layer parse_region(list *options, size_params params) |
|
{ |
|
int coords = option_find_int(options, "coords", 4); |
|
int classes = option_find_int(options, "classes", 20); |
|
int num = option_find_int(options, "num", 1); |
|
int max_boxes = option_find_int_quiet(options, "max", 90); |
|
|
|
layer l = make_region_layer(params.batch, params.w, params.h, num, classes, coords, max_boxes); |
|
if (l.outputs != params.inputs) { |
|
printf("Error: l.outputs == params.inputs \n"); |
|
printf("filters= in the [convolutional]-layer doesn't correspond to classes= or num= in [region]-layer \n"); |
|
exit(EXIT_FAILURE); |
|
} |
|
//assert(l.outputs == params.inputs); |
|
|
|
l.log = option_find_int_quiet(options, "log", 0); |
|
l.sqrt = option_find_int_quiet(options, "sqrt", 0); |
|
|
|
l.softmax = option_find_int(options, "softmax", 0); |
|
l.focal_loss = option_find_int_quiet(options, "focal_loss", 0); |
|
//l.max_boxes = option_find_int_quiet(options, "max",30); |
|
l.jitter = option_find_float(options, "jitter", .2); |
|
l.rescore = option_find_int_quiet(options, "rescore",0); |
|
|
|
l.thresh = option_find_float(options, "thresh", .5); |
|
l.classfix = option_find_int_quiet(options, "classfix", 0); |
|
l.absolute = option_find_int_quiet(options, "absolute", 0); |
|
l.random = option_find_int_quiet(options, "random", 0); |
|
|
|
l.coord_scale = option_find_float(options, "coord_scale", 1); |
|
l.object_scale = option_find_float(options, "object_scale", 1); |
|
l.noobject_scale = option_find_float(options, "noobject_scale", 1); |
|
l.mask_scale = option_find_float(options, "mask_scale", 1); |
|
l.class_scale = option_find_float(options, "class_scale", 1); |
|
l.bias_match = option_find_int_quiet(options, "bias_match",0); |
|
|
|
char *tree_file = option_find_str(options, "tree", 0); |
|
if (tree_file) l.softmax_tree = read_tree(tree_file); |
|
char *map_file = option_find_str(options, "map", 0); |
|
if (map_file) l.map = read_map(map_file); |
|
|
|
char *a = option_find_str(options, "anchors", 0); |
|
if(a){ |
|
int len = strlen(a); |
|
int n = 1; |
|
int i; |
|
for(i = 0; i < len; ++i){ |
|
if (a[i] == ',') ++n; |
|
} |
|
for(i = 0; i < n && i < num*2; ++i){ |
|
float bias = atof(a); |
|
l.biases[i] = bias; |
|
a = strchr(a, ',')+1; |
|
} |
|
} |
|
return l; |
|
} |
|
detection_layer parse_detection(list *options, size_params params) |
|
{ |
|
int coords = option_find_int(options, "coords", 1); |
|
int classes = option_find_int(options, "classes", 1); |
|
int rescore = option_find_int(options, "rescore", 0); |
|
int num = option_find_int(options, "num", 1); |
|
int side = option_find_int(options, "side", 7); |
|
detection_layer layer = make_detection_layer(params.batch, params.inputs, num, side, classes, coords, rescore); |
|
|
|
layer.softmax = option_find_int(options, "softmax", 0); |
|
layer.sqrt = option_find_int(options, "sqrt", 0); |
|
|
|
layer.max_boxes = option_find_int_quiet(options, "max",30); |
|
layer.coord_scale = option_find_float(options, "coord_scale", 1); |
|
layer.forced = option_find_int(options, "forced", 0); |
|
layer.object_scale = option_find_float(options, "object_scale", 1); |
|
layer.noobject_scale = option_find_float(options, "noobject_scale", 1); |
|
layer.class_scale = option_find_float(options, "class_scale", 1); |
|
layer.jitter = option_find_float(options, "jitter", .2); |
|
layer.random = option_find_int_quiet(options, "random", 0); |
|
layer.reorg = option_find_int_quiet(options, "reorg", 0); |
|
return layer; |
|
} |
|
|
|
cost_layer parse_cost(list *options, size_params params) |
|
{ |
|
char *type_s = option_find_str(options, "type", "sse"); |
|
COST_TYPE type = get_cost_type(type_s); |
|
float scale = option_find_float_quiet(options, "scale",1); |
|
cost_layer layer = make_cost_layer(params.batch, params.inputs, type, scale); |
|
layer.ratio = option_find_float_quiet(options, "ratio",0); |
|
return layer; |
|
} |
|
|
|
crop_layer parse_crop(list *options, size_params params) |
|
{ |
|
int crop_height = option_find_int(options, "crop_height",1); |
|
int crop_width = option_find_int(options, "crop_width",1); |
|
int flip = option_find_int(options, "flip",0); |
|
float angle = option_find_float(options, "angle",0); |
|
float saturation = option_find_float(options, "saturation",1); |
|
float exposure = option_find_float(options, "exposure",1); |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) error("Layer before crop layer must output image."); |
|
|
|
int noadjust = option_find_int_quiet(options, "noadjust",0); |
|
|
|
crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); |
|
l.shift = option_find_float(options, "shift", 0); |
|
l.noadjust = noadjust; |
|
return l; |
|
} |
|
|
|
layer parse_reorg(list *options, size_params params) |
|
{ |
|
int stride = option_find_int(options, "stride",1); |
|
int reverse = option_find_int_quiet(options, "reverse",0); |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) error("Layer before reorg layer must output image."); |
|
|
|
layer layer = make_reorg_layer(batch,w,h,c,stride,reverse); |
|
return layer; |
|
} |
|
|
|
layer parse_reorg_old(list *options, size_params params) |
|
{ |
|
printf("\n reorg_old \n"); |
|
int stride = option_find_int(options, "stride", 1); |
|
int reverse = option_find_int_quiet(options, "reverse", 0); |
|
|
|
int batch, h, w, c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch = params.batch; |
|
if (!(h && w && c)) error("Layer before reorg layer must output image."); |
|
|
|
layer layer = make_reorg_old_layer(batch, w, h, c, stride, reverse); |
|
return layer; |
|
} |
|
|
|
maxpool_layer parse_maxpool(list *options, size_params params) |
|
{ |
|
int stride = option_find_int(options, "stride",1); |
|
int stride_x = option_find_int_quiet(options, "stride_x", stride); |
|
int stride_y = option_find_int_quiet(options, "stride_y", stride); |
|
int size = option_find_int(options, "size",stride); |
|
int padding = option_find_int_quiet(options, "padding", size-1); |
|
int maxpool_depth = option_find_int_quiet(options, "maxpool_depth", 0); |
|
int out_channels = option_find_int_quiet(options, "out_channels", 1); |
|
int antialiasing = option_find_int_quiet(options, "antialiasing", 0); |
|
|
|
int batch,h,w,c; |
|
h = params.h; |
|
w = params.w; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) error("Layer before maxpool layer must output image."); |
|
|
|
maxpool_layer layer = make_maxpool_layer(batch, h, w, c, size, stride_x, stride_y, padding, maxpool_depth, out_channels, antialiasing, params.train); |
|
return layer; |
|
} |
|
|
|
avgpool_layer parse_avgpool(list *options, size_params params) |
|
{ |
|
int batch,w,h,c; |
|
w = params.w; |
|
h = params.h; |
|
c = params.c; |
|
batch=params.batch; |
|
if(!(h && w && c)) error("Layer before avgpool layer must output image."); |
|
|
|
avgpool_layer layer = make_avgpool_layer(batch,w,h,c); |
|
return layer; |
|
} |
|
|
|
dropout_layer parse_dropout(list *options, size_params params) |
|
{ |
|
float probability = option_find_float(options, "probability", .5); |
|
dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability); |
|
layer.out_w = params.w; |
|
layer.out_h = params.h; |
|
layer.out_c = params.c; |
|
return layer; |
|
} |
|
|
|
layer parse_normalization(list *options, size_params params) |
|
{ |
|
float alpha = option_find_float(options, "alpha", .0001); |
|
float beta = option_find_float(options, "beta" , .75); |
|
float kappa = option_find_float(options, "kappa", 1); |
|
int size = option_find_int(options, "size", 5); |
|
layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa); |
|
return l; |
|
} |
|
|
|
layer parse_batchnorm(list *options, size_params params) |
|
{ |
|
layer l = make_batchnorm_layer(params.batch, params.w, params.h, params.c); |
|
return l; |
|
} |
|
|
|
layer parse_shortcut(list *options, size_params params, network net) |
|
{ |
|
char *activation_s = option_find_str(options, "activation", "logistic"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
int assisted_excitation = option_find_float_quiet(options, "assisted_excitation", 0); |
|
char *l = option_find(options, "from"); |
|
int index = atoi(l); |
|
if(index < 0) index = params.index + index; |
|
|
|
int batch = params.batch; |
|
layer from = net.layers[index]; |
|
if (from.antialiasing) from = *from.input_layer; |
|
|
|
layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c, assisted_excitation, activation, params.train); |
|
|
|
return s; |
|
} |
|
|
|
|
|
layer parse_scale_channels(list *options, size_params params, network net) |
|
{ |
|
char *l = option_find(options, "from"); |
|
int index = atoi(l); |
|
if (index < 0) index = params.index + index; |
|
int scale_wh = option_find_int_quiet(options, "scale_wh", 0); |
|
|
|
int batch = params.batch; |
|
layer from = net.layers[index]; |
|
|
|
layer s = make_scale_channels_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c, scale_wh); |
|
|
|
char *activation_s = option_find_str_quiet(options, "activation", "linear"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
s.activation = activation; |
|
if (activation == SWISH || activation == MISH) { |
|
printf(" [scale_channels] layer doesn't support SWISH or MISH activations \n"); |
|
} |
|
return s; |
|
} |
|
|
|
layer parse_sam(list *options, size_params params, network net) |
|
{ |
|
char *l = option_find(options, "from"); |
|
int index = atoi(l); |
|
if (index < 0) index = params.index + index; |
|
|
|
int batch = params.batch; |
|
layer from = net.layers[index]; |
|
|
|
layer s = make_sam_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c); |
|
|
|
char *activation_s = option_find_str_quiet(options, "activation", "linear"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
s.activation = activation; |
|
if (activation == SWISH || activation == MISH) { |
|
printf(" [sam] layer doesn't support SWISH or MISH activations \n"); |
|
} |
|
return s; |
|
} |
|
|
|
|
|
layer parse_activation(list *options, size_params params) |
|
{ |
|
char *activation_s = option_find_str(options, "activation", "linear"); |
|
ACTIVATION activation = get_activation(activation_s); |
|
|
|
layer l = make_activation_layer(params.batch, params.inputs, activation); |
|
|
|
l.out_h = params.h; |
|
l.out_w = params.w; |
|
l.out_c = params.c; |
|
l.h = params.h; |
|
l.w = params.w; |
|
l.c = params.c; |
|
|
|
return l; |
|
} |
|
|
|
layer parse_upsample(list *options, size_params params, network net) |
|
{ |
|
|
|
int stride = option_find_int(options, "stride", 2); |
|
layer l = make_upsample_layer(params.batch, params.w, params.h, params.c, stride); |
|
l.scale = option_find_float_quiet(options, "scale", 1); |
|
return l; |
|
} |
|
|
|
route_layer parse_route(list *options, size_params params) |
|
{ |
|
char *l = option_find(options, "layers"); |
|
int len = strlen(l); |
|
if(!l) error("Route Layer must specify input layers"); |
|
int n = 1; |
|
int i; |
|
for(i = 0; i < len; ++i){ |
|
if (l[i] == ',') ++n; |
|
} |
|
|
|
int* layers = (int*)calloc(n, sizeof(int)); |
|
int* sizes = (int*)calloc(n, sizeof(int)); |
|
for(i = 0; i < n; ++i){ |
|
int index = atoi(l); |
|
l = strchr(l, ',')+1; |
|
if(index < 0) index = params.index + index; |
|
layers[i] = index; |
|
sizes[i] = params.net.layers[index].outputs; |
|
} |
|
int batch = params.batch; |
|
|
|
int groups = option_find_int_quiet(options, "groups", 1); |
|
int group_id = option_find_int_quiet(options, "group_id", 0); |
|
|
|
route_layer layer = make_route_layer(batch, n, layers, sizes, groups, group_id); |
|
|
|
convolutional_layer first = params.net.layers[layers[0]]; |
|
layer.out_w = first.out_w; |
|
layer.out_h = first.out_h; |
|
layer.out_c = first.out_c; |
|
for(i = 1; i < n; ++i){ |
|
int index = layers[i]; |
|
convolutional_layer next = params.net.layers[index]; |
|
if(next.out_w == first.out_w && next.out_h == first.out_h){ |
|
layer.out_c += next.out_c; |
|
}else{ |
|
layer.out_h = layer.out_w = layer.out_c = 0; |
|
} |
|
} |
|
layer.out_c = layer.out_c / layer.groups; |
|
|
|
layer.w = first.w; |
|
layer.h = first.h; |
|
layer.c = layer.out_c; |
|
|
|
if (n > 3) fprintf(stderr, " \t "); |
|
else if (n > 1) fprintf(stderr, " \t "); |
|
else fprintf(stderr, " \t\t "); |
|
|
|
fprintf(stderr, " "); |
|
if (layer.groups > 1) fprintf(stderr, "%d/%d", layer.group_id, layer.groups); |
|
else fprintf(stderr, " "); |
|
fprintf(stderr, " -> %4d x%4d x%4d \n", layer.out_w, layer.out_h, layer.out_c); |
|
|
|
return layer; |
|
} |
|
|
|
learning_rate_policy get_policy(char *s) |
|
{ |
|
if (strcmp(s, "random")==0) return RANDOM; |
|
if (strcmp(s, "poly")==0) return POLY; |
|
if (strcmp(s, "constant")==0) return CONSTANT; |
|
if (strcmp(s, "step")==0) return STEP; |
|
if (strcmp(s, "exp")==0) return EXP; |
|
if (strcmp(s, "sigmoid")==0) return SIG; |
|
if (strcmp(s, "steps")==0) return STEPS; |
|
if (strcmp(s, "sgdr")==0) return SGDR; |
|
fprintf(stderr, "Couldn't find policy %s, going with constant\n", s); |
|
return CONSTANT; |
|
} |
|
|
|
void parse_net_options(list *options, network *net) |
|
{ |
|
net->batch = option_find_int(options, "batch",1); |
|
net->learning_rate = option_find_float(options, "learning_rate", .001); |
|
net->learning_rate_min = option_find_float_quiet(options, "learning_rate_min", .00001); |
|
net->batches_per_cycle = option_find_int_quiet(options, "sgdr_cycle", 1000); |
|
net->batches_cycle_mult = option_find_int_quiet(options, "sgdr_mult", 2); |
|
net->momentum = option_find_float(options, "momentum", .9); |
|
net->decay = option_find_float(options, "decay", .0001); |
|
int subdivs = option_find_int(options, "subdivisions",1); |
|
net->time_steps = option_find_int_quiet(options, "time_steps",1); |
|
net->track = option_find_int_quiet(options, "track", 0); |
|
net->augment_speed = option_find_int_quiet(options, "augment_speed", 2); |
|
net->init_sequential_subdivisions = net->sequential_subdivisions = option_find_int_quiet(options, "sequential_subdivisions", subdivs); |
|
if (net->sequential_subdivisions > subdivs) net->init_sequential_subdivisions = net->sequential_subdivisions = subdivs; |
|
net->try_fix_nan = option_find_int_quiet(options, "try_fix_nan", 0); |
|
net->batch /= subdivs; |
|
net->batch *= net->time_steps; |
|
net->subdivisions = subdivs; |
|
|
|
net->optimized_memory = option_find_int_quiet(options, "optimized_memory", 0); |
|
net->workspace_size_limit = (size_t)1024*1024 * option_find_float_quiet(options, "workspace_size_limit_MB", 1024); // 1024 MB by default |
|
|
|
net->adam = option_find_int_quiet(options, "adam", 0); |
|
if(net->adam){ |
|
net->B1 = option_find_float(options, "B1", .9); |
|
net->B2 = option_find_float(options, "B2", .999); |
|
net->eps = option_find_float(options, "eps", .000001); |
|
} |
|
|
|
net->h = option_find_int_quiet(options, "height",0); |
|
net->w = option_find_int_quiet(options, "width",0); |
|
net->c = option_find_int_quiet(options, "channels",0); |
|
net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
|
net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); |
|
net->min_crop = option_find_int_quiet(options, "min_crop",net->w); |
|
net->flip = option_find_int_quiet(options, "flip", 1); |
|
net->blur = option_find_int_quiet(options, "blur", 0); |
|
net->mixup = option_find_int_quiet(options, "mixup", 0); |
|
int cutmix = option_find_int_quiet(options, "cutmix", 0); |
|
int mosaic = option_find_int_quiet(options, "mosaic", 0); |
|
if (mosaic && cutmix) net->mixup = 4; |
|
else if (cutmix) net->mixup = 2; |
|
else if (mosaic) net->mixup = 3; |
|
net->letter_box = option_find_int_quiet(options, "letter_box", 0); |
|
net->label_smooth_eps = option_find_float_quiet(options, "label_smooth_eps", 0.0f); |
|
|
|
net->angle = option_find_float_quiet(options, "angle", 0); |
|
net->aspect = option_find_float_quiet(options, "aspect", 1); |
|
net->saturation = option_find_float_quiet(options, "saturation", 1); |
|
net->exposure = option_find_float_quiet(options, "exposure", 1); |
|
net->hue = option_find_float_quiet(options, "hue", 0); |
|
net->power = option_find_float_quiet(options, "power", 4); |
|
|
|
if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); |
|
|
|
char *policy_s = option_find_str(options, "policy", "constant"); |
|
net->policy = get_policy(policy_s); |
|
net->burn_in = option_find_int_quiet(options, "burn_in", 0); |
|
#ifdef CUDNN_HALF |
|
if (net->gpu_index >= 0) { |
|
int compute_capability = get_gpu_compute_capability(net->gpu_index); |
|
if (get_gpu_compute_capability(net->gpu_index) >= 700) net->cudnn_half = 1; |
|
else net->cudnn_half = 0; |
|
fprintf(stderr, " compute_capability = %d, cudnn_half = %d \n", compute_capability, net->cudnn_half); |
|
} |
|
else fprintf(stderr, " GPU isn't used \n"); |
|
#endif |
|
if(net->policy == STEP){ |
|
net->step = option_find_int(options, "step", 1); |
|
net->scale = option_find_float(options, "scale", 1); |
|
} else if (net->policy == STEPS || net->policy == SGDR){ |
|
char *l = option_find(options, "steps"); |
|
char *p = option_find(options, "scales"); |
|
char *s = option_find(options, "seq_scales"); |
|
if(net->policy == STEPS && (!l || !p)) error("STEPS policy must have steps and scales in cfg file"); |
|
|
|
if (l) { |
|
int len = strlen(l); |
|
int n = 1; |
|
int i; |
|
for (i = 0; i < len; ++i) { |
|
if (l[i] == ',') ++n; |
|
} |
|
int* steps = (int*)calloc(n, sizeof(int)); |
|
float* scales = (float*)calloc(n, sizeof(float)); |
|
float* seq_scales = (float*)calloc(n, sizeof(float)); |
|
for (i = 0; i < n; ++i) { |
|
float scale = 1.0; |
|
if (p) { |
|
scale = atof(p); |
|
p = strchr(p, ',') + 1; |
|
} |
|
float sequence_scale = 1.0; |
|
if (s) { |
|
sequence_scale = atof(s); |
|
s = strchr(s, ',') + 1; |
|
} |
|
int step = atoi(l); |
|
l = strchr(l, ',') + 1; |
|
steps[i] = step; |
|
scales[i] = scale; |
|
seq_scales[i] = sequence_scale; |
|
} |
|
net->scales = scales; |
|
net->steps = steps; |
|
net->seq_scales = seq_scales; |
|
net->num_steps = n; |
|
} |
|
} else if (net->policy == EXP){ |
|
net->gamma = option_find_float(options, "gamma", 1); |
|
} else if (net->policy == SIG){ |
|
net->gamma = option_find_float(options, "gamma", 1); |
|
net->step = option_find_int(options, "step", 1); |
|
} else if (net->policy == POLY || net->policy == RANDOM){ |
|
//net->power = option_find_float(options, "power", 1); |
|
} |
|
net->max_batches = option_find_int(options, "max_batches", 0); |
|
} |
|
|
|
int is_network(section *s) |
|
{ |
|
return (strcmp(s->type, "[net]")==0 |
|
|| strcmp(s->type, "[network]")==0); |
|
} |
|
|
|
network parse_network_cfg(char *filename) |
|
{ |
|
return parse_network_cfg_custom(filename, 0, 0); |
|
} |
|
|
|
network parse_network_cfg_custom(char *filename, int batch, int time_steps) |
|
{ |
|
list *sections = read_cfg(filename); |
|
node *n = sections->front; |
|
if(!n) error("Config file has no sections"); |
|
network net = make_network(sections->size - 1); |
|
net.gpu_index = gpu_index; |
|
size_params params; |
|
|
|
if (batch > 0) params.train = 0; // allocates memory for Detection only |
|
else params.train = 1; // allocates memory for Detection & Training |
|
|
|
section *s = (section *)n->val; |
|
list *options = s->options; |
|
if(!is_network(s)) error("First section must be [net] or [network]"); |
|
parse_net_options(options, &net); |
|
|
|
#ifdef GPU |
|
printf("net.optimized_memory = %d \n", net.optimized_memory); |
|
if (net.optimized_memory >= 2 && params.train) { |
|
pre_allocate_pinned_memory((size_t)1024 * 1024 * 1024 * 8); // pre-allocate 8 GB CPU-RAM for pinned memory |
|
} |
|
#endif // GPU |
|
|
|
params.h = net.h; |
|
params.w = net.w; |
|
params.c = net.c; |
|
params.inputs = net.inputs; |
|
if (batch > 0) net.batch = batch; |
|
if (time_steps > 0) net.time_steps = time_steps; |
|
if (net.batch < 1) net.batch = 1; |
|
if (net.time_steps < 1) net.time_steps = 1; |
|
if (net.batch < net.time_steps) net.batch = net.time_steps; |
|
params.batch = net.batch; |
|
params.time_steps = net.time_steps; |
|
params.net = net; |
|
printf("batch = %d, time_steps = %d, train = %d \n", net.batch, net.time_steps, params.train); |
|
|
|
float bflops = 0; |
|
size_t workspace_size = 0; |
|
size_t max_inputs = 0; |
|
size_t max_outputs = 0; |
|
n = n->next; |
|
int count = 0; |
|
free_section(s); |
|
fprintf(stderr, " layer filters size/strd(dil) input output\n"); |
|
while(n){ |
|
params.index = count; |
|
fprintf(stderr, "%4d ", count); |
|
s = (section *)n->val; |
|
options = s->options; |
|
layer l = { (LAYER_TYPE)0 }; |
|
LAYER_TYPE lt = string_to_layer_type(s->type); |
|
if(lt == CONVOLUTIONAL){ |
|
l = parse_convolutional(options, params); |
|
}else if(lt == LOCAL){ |
|
l = parse_local(options, params); |
|
}else if(lt == ACTIVE){ |
|
l = parse_activation(options, params); |
|
}else if(lt == RNN){ |
|
l = parse_rnn(options, params); |
|
}else if(lt == GRU){ |
|
l = parse_gru(options, params); |
|
}else if(lt == LSTM){ |
|
l = parse_lstm(options, params); |
|
}else if (lt == CONV_LSTM) { |
|
l = parse_conv_lstm(options, params); |
|
}else if(lt == CRNN){ |
|
l = parse_crnn(options, params); |
|
}else if(lt == CONNECTED){ |
|
l = parse_connected(options, params); |
|
}else if(lt == CROP){ |
|
l = parse_crop(options, params); |
|
}else if(lt == COST){ |
|
l = parse_cost(options, params); |
|
l.keep_delta_gpu = 1; |
|
}else if(lt == REGION){ |
|
l = parse_region(options, params); |
|
l.keep_delta_gpu = 1; |
|
}else if (lt == YOLO) { |
|
l = parse_yolo(options, params); |
|
l.keep_delta_gpu = 1; |
|
}else if (lt == GAUSSIAN_YOLO) { |
|
l = parse_gaussian_yolo(options, params); |
|
l.keep_delta_gpu = 1; |
|
}else if(lt == DETECTION){ |
|
l = parse_detection(options, params); |
|
}else if(lt == SOFTMAX){ |
|
l = parse_softmax(options, params); |
|
net.hierarchy = l.softmax_tree; |
|
l.keep_delta_gpu = 1; |
|
}else if(lt == NORMALIZATION){ |
|
l = parse_normalization(options, params); |
|
}else if(lt == BATCHNORM){ |
|
l = parse_batchnorm(options, params); |
|
}else if(lt == MAXPOOL){ |
|
l = parse_maxpool(options, params); |
|
}else if(lt == REORG){ |
|
l = parse_reorg(options, params); } |
|
else if (lt == REORG_OLD) { |
|
l = parse_reorg_old(options, params); |
|
}else if(lt == AVGPOOL){ |
|
l = parse_avgpool(options, params); |
|
}else if(lt == ROUTE){ |
|
l = parse_route(options, params); |
|
int k; |
|
for (k = 0; k < l.n; ++k) { |
|
net.layers[l.input_layers[k]].use_bin_output = 0; |
|
net.layers[l.input_layers[k]].keep_delta_gpu = 1; |
|
} |
|
}else if (lt == UPSAMPLE) { |
|
l = parse_upsample(options, params, net); |
|
}else if(lt == SHORTCUT){ |
|
l = parse_shortcut(options, params, net); |
|
net.layers[count - 1].use_bin_output = 0; |
|
net.layers[l.index].use_bin_output = 0; |
|
net.layers[l.index].keep_delta_gpu = 1; |
|
}else if (lt == SCALE_CHANNELS) { |
|
l = parse_scale_channels(options, params, net); |
|
net.layers[count - 1].use_bin_output = 0; |
|
net.layers[l.index].use_bin_output = 0; |
|
net.layers[l.index].keep_delta_gpu = 1; |
|
} |
|
else if (lt == SAM) { |
|
l = parse_sam(options, params, net); |
|
net.layers[count - 1].use_bin_output = 0; |
|
net.layers[l.index].use_bin_output = 0; |
|
net.layers[l.index].keep_delta_gpu = 1; |
|
}else if(lt == DROPOUT){ |
|
l = parse_dropout(options, params); |
|
l.output = net.layers[count-1].output; |
|
l.delta = net.layers[count-1].delta; |
|
#ifdef GPU |
|
l.output_gpu = net.layers[count-1].output_gpu; |
|
l.delta_gpu = net.layers[count-1].delta_gpu; |
|
l.keep_delta_gpu = 1; |
|
#endif |
|
} |
|
else if (lt == EMPTY) { |
|
layer empty_layer; |
|
empty_layer.out_w = params.w; |
|
empty_layer.out_h = params.h; |
|
empty_layer.out_c = params.c; |
|
l = empty_layer; |
|
l.output = net.layers[count - 1].output; |
|
l.delta = net.layers[count - 1].delta; |
|
#ifdef GPU |
|
l.output_gpu = net.layers[count - 1].output_gpu; |
|
l.delta_gpu = net.layers[count - 1].delta_gpu; |
|
#endif |
|
}else{ |
|
fprintf(stderr, "Type not recognized: %s\n", s->type); |
|
} |
|
|
|
#ifdef GPU |
|
// futher GPU-memory optimization: net.optimized_memory == 2 |
|
if (net.optimized_memory >= 2 && params.train && l.type != DROPOUT) |
|
{ |
|
l.optimized_memory = net.optimized_memory; |
|
if (l.output_gpu) { |
|
cuda_free(l.output_gpu); |
|
//l.output_gpu = cuda_make_array_pinned(l.output, l.batch*l.outputs); // l.steps |
|
l.output_gpu = cuda_make_array_pinned_preallocated(NULL, l.batch*l.outputs); // l.steps |
|
} |
|
if (l.activation_input_gpu) { |
|
cuda_free(l.activation_input_gpu); |
|
l.activation_input_gpu = cuda_make_array_pinned_preallocated(NULL, l.batch*l.outputs); // l.steps |
|
} |
|
|
|
if (l.x_gpu) { |
|
cuda_free(l.x_gpu); |
|
l.x_gpu = cuda_make_array_pinned_preallocated(NULL, l.batch*l.outputs); // l.steps |
|
} |
|
|
|
// maximum optimization |
|
if (net.optimized_memory >= 3 && l.type != DROPOUT) { |
|
if (l.delta_gpu) { |
|
cuda_free(l.delta_gpu); |
|
//l.delta_gpu = cuda_make_array_pinned_preallocated(NULL, l.batch*l.outputs); // l.steps |
|
//printf("\n\n PINNED DELTA GPU = %d \n", l.batch*l.outputs); |
|
} |
|
} |
|
|
|
if (l.type == CONVOLUTIONAL) { |
|
set_specified_workspace_limit(&l, net.workspace_size_limit); // workspace size limit 1 GB |
|
} |
|
} |
|
#endif // GPU |
|
|
|
l.onlyforward = option_find_int_quiet(options, "onlyforward", 0); |
|
l.stopbackward = option_find_int_quiet(options, "stopbackward", 0); |
|
l.dontload = option_find_int_quiet(options, "dontload", 0); |
|
l.dontloadscales = option_find_int_quiet(options, "dontloadscales", 0); |
|
l.learning_rate_scale = option_find_float_quiet(options, "learning_rate", 1); |
|
option_unused(options); |
|
net.layers[count] = l; |
|
if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
|
if (l.inputs > max_inputs) max_inputs = l.inputs; |
|
if (l.outputs > max_outputs) max_outputs = l.outputs; |
|
free_section(s); |
|
n = n->next; |
|
++count; |
|
if(n){ |
|
if (l.antialiasing) { |
|
params.h = l.input_layer->out_h; |
|
params.w = l.input_layer->out_w; |
|
params.c = l.input_layer->out_c; |
|
params.inputs = l.input_layer->outputs; |
|
} |
|
else { |
|
params.h = l.out_h; |
|
params.w = l.out_w; |
|
params.c = l.out_c; |
|
params.inputs = l.outputs; |
|
} |
|
} |
|
if (l.bflops > 0) bflops += l.bflops; |
|
} |
|
free_list(sections); |
|
|
|
#ifdef GPU |
|
if (net.optimized_memory && params.train) |
|
{ |
|
int k; |
|
for (k = 0; k < net.n; ++k) { |
|
layer l = net.layers[k]; |
|
// delta GPU-memory optimization: net.optimized_memory == 1 |
|
if (!l.keep_delta_gpu) { |
|
const size_t delta_size = l.outputs*l.batch; // l.steps |
|
if (net.max_delta_gpu_size < delta_size) { |
|
net.max_delta_gpu_size = delta_size; |
|
if (net.global_delta_gpu) cuda_free(net.global_delta_gpu); |
|
if (net.state_delta_gpu) cuda_free(net.state_delta_gpu); |
|
assert(net.max_delta_gpu_size > 0); |
|
net.global_delta_gpu = (float *)cuda_make_array(NULL, net.max_delta_gpu_size); |
|
net.state_delta_gpu = (float *)cuda_make_array(NULL, net.max_delta_gpu_size); |
|
} |
|
if (l.delta_gpu) { |
|
if (net.optimized_memory >= 3) {} |
|
else cuda_free(l.delta_gpu); |
|
} |
|
l.delta_gpu = net.global_delta_gpu; |
|
} |
|
|
|
// maximum optimization |
|
if (net.optimized_memory >= 3 && l.type != DROPOUT) { |
|
if (l.delta_gpu && l.keep_delta_gpu) { |
|
//cuda_free(l.delta_gpu); // already called above |
|
l.delta_gpu = cuda_make_array_pinned_preallocated(NULL, l.batch*l.outputs); // l.steps |
|
//printf("\n\n PINNED DELTA GPU = %d \n", l.batch*l.outputs); |
|
} |
|
} |
|
|
|
net.layers[k] = l; |
|
} |
|
} |
|
#endif |
|
|
|
net.outputs = get_network_output_size(net); |
|
net.output = get_network_output(net); |
|
fprintf(stderr, "Total BFLOPS %5.3f \n", bflops); |
|
#ifdef GPU |
|
get_cuda_stream(); |
|
get_cuda_memcpy_stream(); |
|
if (gpu_index >= 0) |
|
{ |
|
int size = get_network_input_size(net) * net.batch; |
|
net.input_state_gpu = cuda_make_array(0, size); |
|
if (cudaSuccess == cudaHostAlloc(&net.input_pinned_cpu, size * sizeof(float), cudaHostRegisterMapped)) net.input_pinned_cpu_flag = 1; |
|
else { |
|
cudaGetLastError(); // reset CUDA-error |
|
net.input_pinned_cpu = (float*)calloc(size, sizeof(float)); |
|
} |
|
|
|
// pre-allocate memory for inference on Tensor Cores (fp16) |
|
if (net.cudnn_half) { |
|
*net.max_input16_size = max_inputs; |
|
CHECK_CUDA(cudaMalloc((void **)net.input16_gpu, *net.max_input16_size * sizeof(short))); //sizeof(half) |
|
*net.max_output16_size = max_outputs; |
|
CHECK_CUDA(cudaMalloc((void **)net.output16_gpu, *net.max_output16_size * sizeof(short))); //sizeof(half) |
|
} |
|
if (workspace_size) { |
|
fprintf(stderr, " Allocate additional workspace_size = %1.2f MB \n", (float)workspace_size/1000000); |
|
net.workspace = cuda_make_array(0, workspace_size / sizeof(float) + 1); |
|
} |
|
else { |
|
net.workspace = (float*)calloc(1, workspace_size); |
|
} |
|
} |
|
#else |
|
if (workspace_size) { |
|
net.workspace = (float*)calloc(1, workspace_size); |
|
} |
|
#endif |
|
|
|
LAYER_TYPE lt = net.layers[net.n - 1].type; |
|
if ((net.w % 32 != 0 || net.h % 32 != 0) && (lt == YOLO || lt == REGION || lt == DETECTION)) { |
|
printf("\n Warning: width=%d and height=%d in cfg-file must be divisible by 32 for default networks Yolo v1/v2/v3!!! \n\n", |
|
net.w, net.h); |
|
} |
|
return net; |
|
} |
|
|
|
|
|
|
|
list *read_cfg(char *filename) |
|
{ |
|
FILE *file = fopen(filename, "r"); |
|
if(file == 0) file_error(filename); |
|
char *line; |
|
int nu = 0; |
|
list *sections = make_list(); |
|
section *current = 0; |
|
while((line=fgetl(file)) != 0){ |
|
++ nu; |
|
strip(line); |
|
switch(line[0]){ |
|
case '[': |
|
current = (section*)malloc(sizeof(section)); |
|
list_insert(sections, current); |
|
current->options = make_list(); |
|
current->type = line; |
|
break; |
|
case '\0': |
|
case '#': |
|
case ';': |
|
free(line); |
|
break; |
|
default: |
|
if(!read_option(line, current->options)){ |
|
fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line); |
|
free(line); |
|
} |
|
break; |
|
} |
|
} |
|
fclose(file); |
|
return sections; |
|
} |
|
|
|
void save_convolutional_weights_binary(layer l, FILE *fp) |
|
{ |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
pull_convolutional_layer(l); |
|
} |
|
#endif |
|
int size = (l.c/l.groups)*l.size*l.size; |
|
binarize_weights(l.weights, l.n, size, l.binary_weights); |
|
int i, j, k; |
|
fwrite(l.biases, sizeof(float), l.n, fp); |
|
if (l.batch_normalize){ |
|
fwrite(l.scales, sizeof(float), l.n, fp); |
|
fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
|
fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
|
} |
|
for(i = 0; i < l.n; ++i){ |
|
float mean = l.binary_weights[i*size]; |
|
if(mean < 0) mean = -mean; |
|
fwrite(&mean, sizeof(float), 1, fp); |
|
for(j = 0; j < size/8; ++j){ |
|
int index = i*size + j*8; |
|
unsigned char c = 0; |
|
for(k = 0; k < 8; ++k){ |
|
if (j*8 + k >= size) break; |
|
if (l.binary_weights[index + k] > 0) c = (c | 1<<k); |
|
} |
|
fwrite(&c, sizeof(char), 1, fp); |
|
} |
|
} |
|
} |
|
|
|
void save_convolutional_weights(layer l, FILE *fp) |
|
{ |
|
if(l.binary){ |
|
//save_convolutional_weights_binary(l, fp); |
|
//return; |
|
} |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
pull_convolutional_layer(l); |
|
} |
|
#endif |
|
int num = l.nweights; |
|
fwrite(l.biases, sizeof(float), l.n, fp); |
|
if (l.batch_normalize){ |
|
fwrite(l.scales, sizeof(float), l.n, fp); |
|
fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
|
fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
|
} |
|
fwrite(l.weights, sizeof(float), num, fp); |
|
//if(l.adam){ |
|
// fwrite(l.m, sizeof(float), num, fp); |
|
// fwrite(l.v, sizeof(float), num, fp); |
|
//} |
|
} |
|
|
|
void save_batchnorm_weights(layer l, FILE *fp) |
|
{ |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
pull_batchnorm_layer(l); |
|
} |
|
#endif |
|
fwrite(l.scales, sizeof(float), l.c, fp); |
|
fwrite(l.rolling_mean, sizeof(float), l.c, fp); |
|
fwrite(l.rolling_variance, sizeof(float), l.c, fp); |
|
} |
|
|
|
void save_connected_weights(layer l, FILE *fp) |
|
{ |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
pull_connected_layer(l); |
|
} |
|
#endif |
|
fwrite(l.biases, sizeof(float), l.outputs, fp); |
|
fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
|
if (l.batch_normalize){ |
|
fwrite(l.scales, sizeof(float), l.outputs, fp); |
|
fwrite(l.rolling_mean, sizeof(float), l.outputs, fp); |
|
fwrite(l.rolling_variance, sizeof(float), l.outputs, fp); |
|
} |
|
} |
|
|
|
void save_weights_upto(network net, char *filename, int cutoff) |
|
{ |
|
#ifdef GPU |
|
if(net.gpu_index >= 0){ |
|
cuda_set_device(net.gpu_index); |
|
} |
|
#endif |
|
fprintf(stderr, "Saving weights to %s\n", filename); |
|
FILE *fp = fopen(filename, "wb"); |
|
if(!fp) file_error(filename); |
|
|
|
int major = MAJOR_VERSION; |
|
int minor = MINOR_VERSION; |
|
int revision = PATCH_VERSION; |
|
fwrite(&major, sizeof(int), 1, fp); |
|
fwrite(&minor, sizeof(int), 1, fp); |
|
fwrite(&revision, sizeof(int), 1, fp); |
|
fwrite(net.seen, sizeof(uint64_t), 1, fp); |
|
|
|
int i; |
|
for(i = 0; i < net.n && i < cutoff; ++i){ |
|
layer l = net.layers[i]; |
|
if(l.type == CONVOLUTIONAL && l.share_layer == NULL){ |
|
save_convolutional_weights(l, fp); |
|
} if(l.type == CONNECTED){ |
|
save_connected_weights(l, fp); |
|
} if(l.type == BATCHNORM){ |
|
save_batchnorm_weights(l, fp); |
|
} if(l.type == RNN){ |
|
save_connected_weights(*(l.input_layer), fp); |
|
save_connected_weights(*(l.self_layer), fp); |
|
save_connected_weights(*(l.output_layer), fp); |
|
} if(l.type == GRU){ |
|
save_connected_weights(*(l.input_z_layer), fp); |
|
save_connected_weights(*(l.input_r_layer), fp); |
|
save_connected_weights(*(l.input_h_layer), fp); |
|
save_connected_weights(*(l.state_z_layer), fp); |
|
save_connected_weights(*(l.state_r_layer), fp); |
|
save_connected_weights(*(l.state_h_layer), fp); |
|
} if(l.type == LSTM){ |
|
save_connected_weights(*(l.wf), fp); |
|
save_connected_weights(*(l.wi), fp); |
|
save_connected_weights(*(l.wg), fp); |
|
save_connected_weights(*(l.wo), fp); |
|
save_connected_weights(*(l.uf), fp); |
|
save_connected_weights(*(l.ui), fp); |
|
save_connected_weights(*(l.ug), fp); |
|
save_connected_weights(*(l.uo), fp); |
|
} if (l.type == CONV_LSTM) { |
|
if (l.peephole) { |
|
save_convolutional_weights(*(l.vf), fp); |
|
save_convolutional_weights(*(l.vi), fp); |
|
save_convolutional_weights(*(l.vo), fp); |
|
} |
|
save_convolutional_weights(*(l.wf), fp); |
|
save_convolutional_weights(*(l.wi), fp); |
|
save_convolutional_weights(*(l.wg), fp); |
|
save_convolutional_weights(*(l.wo), fp); |
|
save_convolutional_weights(*(l.uf), fp); |
|
save_convolutional_weights(*(l.ui), fp); |
|
save_convolutional_weights(*(l.ug), fp); |
|
save_convolutional_weights(*(l.uo), fp); |
|
} if(l.type == CRNN){ |
|
save_convolutional_weights(*(l.input_layer), fp); |
|
save_convolutional_weights(*(l.self_layer), fp); |
|
save_convolutional_weights(*(l.output_layer), fp); |
|
} if(l.type == LOCAL){ |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
pull_local_layer(l); |
|
} |
|
#endif |
|
int locations = l.out_w*l.out_h; |
|
int size = l.size*l.size*l.c*l.n*locations; |
|
fwrite(l.biases, sizeof(float), l.outputs, fp); |
|
fwrite(l.weights, sizeof(float), size, fp); |
|
} |
|
} |
|
fclose(fp); |
|
} |
|
void save_weights(network net, char *filename) |
|
{ |
|
save_weights_upto(net, filename, net.n); |
|
} |
|
|
|
void transpose_matrix(float *a, int rows, int cols) |
|
{ |
|
float* transpose = (float*)calloc(rows * cols, sizeof(float)); |
|
int x, y; |
|
for(x = 0; x < rows; ++x){ |
|
for(y = 0; y < cols; ++y){ |
|
transpose[y*rows + x] = a[x*cols + y]; |
|
} |
|
} |
|
memcpy(a, transpose, rows*cols*sizeof(float)); |
|
free(transpose); |
|
} |
|
|
|
void load_connected_weights(layer l, FILE *fp, int transpose) |
|
{ |
|
fread(l.biases, sizeof(float), l.outputs, fp); |
|
fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
|
if(transpose){ |
|
transpose_matrix(l.weights, l.inputs, l.outputs); |
|
} |
|
//printf("Biases: %f mean %f variance\n", mean_array(l.biases, l.outputs), variance_array(l.biases, l.outputs)); |
|
//printf("Weights: %f mean %f variance\n", mean_array(l.weights, l.outputs*l.inputs), variance_array(l.weights, l.outputs*l.inputs)); |
|
if (l.batch_normalize && (!l.dontloadscales)){ |
|
fread(l.scales, sizeof(float), l.outputs, fp); |
|
fread(l.rolling_mean, sizeof(float), l.outputs, fp); |
|
fread(l.rolling_variance, sizeof(float), l.outputs, fp); |
|
//printf("Scales: %f mean %f variance\n", mean_array(l.scales, l.outputs), variance_array(l.scales, l.outputs)); |
|
//printf("rolling_mean: %f mean %f variance\n", mean_array(l.rolling_mean, l.outputs), variance_array(l.rolling_mean, l.outputs)); |
|
//printf("rolling_variance: %f mean %f variance\n", mean_array(l.rolling_variance, l.outputs), variance_array(l.rolling_variance, l.outputs)); |
|
} |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
push_connected_layer(l); |
|
} |
|
#endif |
|
} |
|
|
|
void load_batchnorm_weights(layer l, FILE *fp) |
|
{ |
|
fread(l.scales, sizeof(float), l.c, fp); |
|
fread(l.rolling_mean, sizeof(float), l.c, fp); |
|
fread(l.rolling_variance, sizeof(float), l.c, fp); |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
push_batchnorm_layer(l); |
|
} |
|
#endif |
|
} |
|
|
|
void load_convolutional_weights_binary(layer l, FILE *fp) |
|
{ |
|
fread(l.biases, sizeof(float), l.n, fp); |
|
if (l.batch_normalize && (!l.dontloadscales)){ |
|
fread(l.scales, sizeof(float), l.n, fp); |
|
fread(l.rolling_mean, sizeof(float), l.n, fp); |
|
fread(l.rolling_variance, sizeof(float), l.n, fp); |
|
} |
|
int size = (l.c / l.groups)*l.size*l.size; |
|
int i, j, k; |
|
for(i = 0; i < l.n; ++i){ |
|
float mean = 0; |
|
fread(&mean, sizeof(float), 1, fp); |
|
for(j = 0; j < size/8; ++j){ |
|
int index = i*size + j*8; |
|
unsigned char c = 0; |
|
fread(&c, sizeof(char), 1, fp); |
|
for(k = 0; k < 8; ++k){ |
|
if (j*8 + k >= size) break; |
|
l.weights[index + k] = (c & 1<<k) ? mean : -mean; |
|
} |
|
} |
|
} |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
push_convolutional_layer(l); |
|
} |
|
#endif |
|
} |
|
|
|
void load_convolutional_weights(layer l, FILE *fp) |
|
{ |
|
if(l.binary){ |
|
//load_convolutional_weights_binary(l, fp); |
|
//return; |
|
} |
|
int num = l.nweights; |
|
int read_bytes; |
|
read_bytes = fread(l.biases, sizeof(float), l.n, fp); |
|
if (read_bytes > 0 && read_bytes < l.n) printf("\n Warning: Unexpected end of wights-file! l.biases - l.index = %d \n", l.index); |
|
//fread(l.weights, sizeof(float), num, fp); // as in connected layer |
|
if (l.batch_normalize && (!l.dontloadscales)){ |
|
read_bytes = fread(l.scales, sizeof(float), l.n, fp); |
|
if (read_bytes > 0 && read_bytes < l.n) printf("\n Warning: Unexpected end of wights-file! l.scales - l.index = %d \n", l.index); |
|
read_bytes = fread(l.rolling_mean, sizeof(float), l.n, fp); |
|
if (read_bytes > 0 && read_bytes < l.n) printf("\n Warning: Unexpected end of wights-file! l.rolling_mean - l.index = %d \n", l.index); |
|
read_bytes = fread(l.rolling_variance, sizeof(float), l.n, fp); |
|
if (read_bytes > 0 && read_bytes < l.n) printf("\n Warning: Unexpected end of wights-file! l.rolling_variance - l.index = %d \n", l.index); |
|
if(0){ |
|
int i; |
|
for(i = 0; i < l.n; ++i){ |
|
printf("%g, ", l.rolling_mean[i]); |
|
} |
|
printf("\n"); |
|
for(i = 0; i < l.n; ++i){ |
|
printf("%g, ", l.rolling_variance[i]); |
|
} |
|
printf("\n"); |
|
} |
|
if(0){ |
|
fill_cpu(l.n, 0, l.rolling_mean, 1); |
|
fill_cpu(l.n, 0, l.rolling_variance, 1); |
|
} |
|
} |
|
read_bytes = fread(l.weights, sizeof(float), num, fp); |
|
if (read_bytes > 0 && read_bytes < l.n) printf("\n Warning: Unexpected end of wights-file! l.weights - l.index = %d \n", l.index); |
|
//if(l.adam){ |
|
// fread(l.m, sizeof(float), num, fp); |
|
// fread(l.v, sizeof(float), num, fp); |
|
//} |
|
//if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1); |
|
if (l.flipped) { |
|
transpose_matrix(l.weights, (l.c/l.groups)*l.size*l.size, l.n); |
|
} |
|
//if (l.binary) binarize_weights(l.weights, l.n, (l.c/l.groups)*l.size*l.size, l.weights); |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
push_convolutional_layer(l); |
|
} |
|
#endif |
|
} |
|
|
|
|
|
void load_weights_upto(network *net, char *filename, int cutoff) |
|
{ |
|
#ifdef GPU |
|
if(net->gpu_index >= 0){ |
|
cuda_set_device(net->gpu_index); |
|
} |
|
#endif |
|
fprintf(stderr, "Loading weights from %s...", filename); |
|
fflush(stdout); |
|
FILE *fp = fopen(filename, "rb"); |
|
if(!fp) file_error(filename); |
|
|
|
int major; |
|
int minor; |
|
int revision; |
|
fread(&major, sizeof(int), 1, fp); |
|
fread(&minor, sizeof(int), 1, fp); |
|
fread(&revision, sizeof(int), 1, fp); |
|
if ((major * 10 + minor) >= 2) { |
|
printf("\n seen 64 \n"); |
|
uint64_t iseen = 0; |
|
fread(&iseen, sizeof(uint64_t), 1, fp); |
|
*net->seen = iseen; |
|
} |
|
else { |
|
printf("\n seen 32 \n"); |
|
uint32_t iseen = 0; |
|
fread(&iseen, sizeof(uint32_t), 1, fp); |
|
*net->seen = iseen; |
|
} |
|
int transpose = (major > 1000) || (minor > 1000); |
|
|
|
int i; |
|
for(i = 0; i < net->n && i < cutoff; ++i){ |
|
layer l = net->layers[i]; |
|
if (l.dontload) continue; |
|
if(l.type == CONVOLUTIONAL && l.share_layer == NULL){ |
|
load_convolutional_weights(l, fp); |
|
} |
|
if(l.type == CONNECTED){ |
|
load_connected_weights(l, fp, transpose); |
|
} |
|
if(l.type == BATCHNORM){ |
|
load_batchnorm_weights(l, fp); |
|
} |
|
if(l.type == CRNN){ |
|
load_convolutional_weights(*(l.input_layer), fp); |
|
load_convolutional_weights(*(l.self_layer), fp); |
|
load_convolutional_weights(*(l.output_layer), fp); |
|
} |
|
if(l.type == RNN){ |
|
load_connected_weights(*(l.input_layer), fp, transpose); |
|
load_connected_weights(*(l.self_layer), fp, transpose); |
|
load_connected_weights(*(l.output_layer), fp, transpose); |
|
} |
|
if(l.type == GRU){ |
|
load_connected_weights(*(l.input_z_layer), fp, transpose); |
|
load_connected_weights(*(l.input_r_layer), fp, transpose); |
|
load_connected_weights(*(l.input_h_layer), fp, transpose); |
|
load_connected_weights(*(l.state_z_layer), fp, transpose); |
|
load_connected_weights(*(l.state_r_layer), fp, transpose); |
|
load_connected_weights(*(l.state_h_layer), fp, transpose); |
|
} |
|
if(l.type == LSTM){ |
|
load_connected_weights(*(l.wf), fp, transpose); |
|
load_connected_weights(*(l.wi), fp, transpose); |
|
load_connected_weights(*(l.wg), fp, transpose); |
|
load_connected_weights(*(l.wo), fp, transpose); |
|
load_connected_weights(*(l.uf), fp, transpose); |
|
load_connected_weights(*(l.ui), fp, transpose); |
|
load_connected_weights(*(l.ug), fp, transpose); |
|
load_connected_weights(*(l.uo), fp, transpose); |
|
} |
|
if (l.type == CONV_LSTM) { |
|
if (l.peephole) { |
|
load_convolutional_weights(*(l.vf), fp); |
|
load_convolutional_weights(*(l.vi), fp); |
|
load_convolutional_weights(*(l.vo), fp); |
|
} |
|
load_convolutional_weights(*(l.wf), fp); |
|
load_convolutional_weights(*(l.wi), fp); |
|
load_convolutional_weights(*(l.wg), fp); |
|
load_convolutional_weights(*(l.wo), fp); |
|
load_convolutional_weights(*(l.uf), fp); |
|
load_convolutional_weights(*(l.ui), fp); |
|
load_convolutional_weights(*(l.ug), fp); |
|
load_convolutional_weights(*(l.uo), fp); |
|
} |
|
if(l.type == LOCAL){ |
|
int locations = l.out_w*l.out_h; |
|
int size = l.size*l.size*l.c*l.n*locations; |
|
fread(l.biases, sizeof(float), l.outputs, fp); |
|
fread(l.weights, sizeof(float), size, fp); |
|
#ifdef GPU |
|
if(gpu_index >= 0){ |
|
push_local_layer(l); |
|
} |
|
#endif |
|
} |
|
if (feof(fp)) break; |
|
} |
|
fprintf(stderr, "Done! Loaded %d layers from weights-file \n", i); |
|
fclose(fp); |
|
} |
|
|
|
void load_weights(network *net, char *filename) |
|
{ |
|
load_weights_upto(net, filename, net->n); |
|
} |
|
|
|
// load network & force - set batch size |
|
network *load_network_custom(char *cfg, char *weights, int clear, int batch) |
|
{ |
|
printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear); |
|
network* net = (network*)calloc(1, sizeof(network)); |
|
*net = parse_network_cfg_custom(cfg, batch, 0); |
|
if (weights && weights[0] != 0) { |
|
load_weights(net, weights); |
|
} |
|
if (clear) (*net->seen) = 0; |
|
return net; |
|
} |
|
|
|
// load network & get batch size from cfg-file |
|
network *load_network(char *cfg, char *weights, int clear) |
|
{ |
|
printf(" Try to load cfg: %s, weights: %s, clear = %d \n", cfg, weights, clear); |
|
network* net = (network*)calloc(1, sizeof(network)); |
|
*net = parse_network_cfg(cfg); |
|
if (weights && weights[0] != 0) { |
|
load_weights(net, weights); |
|
} |
|
if (clear) (*net->seen) = 0; |
|
return net; |
|
}
|
|
|