mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
4.9 KiB
173 lines
4.9 KiB
#include "network.h" |
|
#include "cost_layer.h" |
|
#include "utils.h" |
|
#include "parser.h" |
|
|
|
#ifdef OPENCV |
|
#include "opencv2/highgui/highgui_c.h" |
|
#include "opencv2/core/version.hpp" |
|
#ifndef CV_VERSION_EPOCH |
|
#include "opencv2/videoio/videoio_c.h" |
|
#endif |
|
image get_image_from_stream(CvCapture *cap); |
|
#endif |
|
|
|
void extract_voxel(char *lfile, char *rfile, char *prefix) |
|
{ |
|
#ifdef OPENCV |
|
int w = 1920; |
|
int h = 1080; |
|
int shift = 0; |
|
int count = 0; |
|
CvCapture *lcap = cvCaptureFromFile(lfile); |
|
CvCapture *rcap = cvCaptureFromFile(rfile); |
|
while(1){ |
|
image l = get_image_from_stream(lcap); |
|
image r = get_image_from_stream(rcap); |
|
if(!l.w || !r.w) break; |
|
if(count%100 == 0) { |
|
shift = best_3d_shift_r(l, r, -l.h/100, l.h/100); |
|
printf("%d\n", shift); |
|
} |
|
image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h); |
|
image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h); |
|
char buff[256]; |
|
sprintf(buff, "%s_%05d_l", prefix, count); |
|
save_image(ls, buff); |
|
sprintf(buff, "%s_%05d_r", prefix, count); |
|
save_image(rs, buff); |
|
free_image(l); |
|
free_image(r); |
|
free_image(ls); |
|
free_image(rs); |
|
++count; |
|
} |
|
|
|
#else |
|
printf("need OpenCV for extraction\n"); |
|
#endif |
|
} |
|
|
|
void train_voxel(char *cfgfile, char *weightfile) |
|
{ |
|
char *train_images = "/data/imagenet/imagenet1k.train.list"; |
|
char *backup_directory = "/home/pjreddie/backup/"; |
|
srand(time(0)); |
|
char *base = basecfg(cfgfile); |
|
printf("%s\n", base); |
|
float avg_loss = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
int imgs = net.batch*net.subdivisions; |
|
int i = *net.seen/imgs; |
|
data train, buffer; |
|
|
|
|
|
list *plist = get_paths(train_images); |
|
//int N = plist->size; |
|
char **paths = (char **)list_to_array(plist); |
|
|
|
load_args args = {0}; |
|
args.w = net.w; |
|
args.h = net.h; |
|
args.scale = 4; |
|
args.paths = paths; |
|
args.n = imgs; |
|
args.m = plist->size; |
|
args.d = &buffer; |
|
args.type = SUPER_DATA; |
|
|
|
pthread_t load_thread = load_data_in_thread(args); |
|
clock_t time; |
|
//while(i*imgs < N*120){ |
|
while(get_current_batch(net) < net.max_batches){ |
|
i += 1; |
|
time=clock(); |
|
pthread_join(load_thread, 0); |
|
train = buffer; |
|
load_thread = load_data_in_thread(args); |
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
time=clock(); |
|
float loss = train_network(net, train); |
|
if (avg_loss < 0) avg_loss = loss; |
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
|
if(i%1000==0){ |
|
char buff[256]; |
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
|
save_weights(net, buff); |
|
} |
|
if(i%100==0){ |
|
char buff[256]; |
|
sprintf(buff, "%s/%s.backup", backup_directory, base); |
|
save_weights(net, buff); |
|
} |
|
free_data(train); |
|
} |
|
char buff[256]; |
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
|
save_weights(net, buff); |
|
} |
|
|
|
void test_voxel(char *cfgfile, char *weightfile, char *filename) |
|
{ |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
set_batch_network(&net, 1); |
|
srand(2222222); |
|
|
|
clock_t time; |
|
char buff[256]; |
|
char *input = buff; |
|
while(1){ |
|
if(filename){ |
|
strncpy(input, filename, 256); |
|
}else{ |
|
printf("Enter Image Path: "); |
|
fflush(stdout); |
|
input = fgets(input, 256, stdin); |
|
if(!input) return; |
|
strtok(input, "\n"); |
|
} |
|
image im = load_image_color(input, 0, 0); |
|
resize_network(&net, im.w, im.h); |
|
printf("%d %d\n", im.w, im.h); |
|
|
|
float *X = im.data; |
|
time=clock(); |
|
network_predict(net, X); |
|
image out = get_network_image(net); |
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
|
save_image(out, "out"); |
|
|
|
free_image(im); |
|
if (filename) break; |
|
} |
|
} |
|
|
|
|
|
void run_voxel(int argc, char **argv) |
|
{ |
|
if(argc < 4){ |
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
|
return; |
|
} |
|
|
|
char *cfg = argv[3]; |
|
char *weights = (argc > 4) ? argv[4] : 0; |
|
char *filename = (argc > 5) ? argv[5] : 0; |
|
if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights); |
|
else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename); |
|
else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]); |
|
/* |
|
else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights); |
|
*/ |
|
}
|
|
|