mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
207 lines
6.1 KiB
207 lines
6.1 KiB
#include <stdio.h> |
|
#include "network.h" |
|
#include "image.h" |
|
#include "data.h" |
|
|
|
#include "connected_layer.h" |
|
#include "convolutional_layer.h" |
|
#include "maxpool_layer.h" |
|
|
|
network make_network(int n) |
|
{ |
|
network net; |
|
net.n = n; |
|
net.layers = calloc(net.n, sizeof(void *)); |
|
net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
|
return net; |
|
} |
|
|
|
void forward_network(network net, double *input) |
|
{ |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
forward_convolutional_layer(layer, input); |
|
input = layer.output; |
|
} |
|
else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
forward_connected_layer(layer, input); |
|
input = layer.output; |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
forward_maxpool_layer(layer, input); |
|
input = layer.output; |
|
} |
|
} |
|
} |
|
|
|
void update_network(network net, double step) |
|
{ |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
update_convolutional_layer(layer, step); |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
} |
|
else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
update_connected_layer(layer, step, .3, 0); |
|
} |
|
} |
|
} |
|
|
|
double *get_network_output_layer(network net, int i) |
|
{ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
return layer.output; |
|
} else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
return layer.output; |
|
} else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
return layer.output; |
|
} |
|
return 0; |
|
} |
|
double *get_network_output(network net) |
|
{ |
|
return get_network_output_layer(net, net.n-1); |
|
} |
|
|
|
double *get_network_delta_layer(network net, int i) |
|
{ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
return layer.delta; |
|
} else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
return layer.delta; |
|
} else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
return layer.delta; |
|
} |
|
return 0; |
|
} |
|
|
|
double *get_network_delta(network net) |
|
{ |
|
return get_network_delta_layer(net, net.n-1); |
|
} |
|
|
|
void learn_network(network net, double *input) |
|
{ |
|
int i; |
|
double *prev_input; |
|
double *prev_delta; |
|
for(i = net.n-1; i >= 0; --i){ |
|
if(i == 0){ |
|
prev_input = input; |
|
prev_delta = 0; |
|
}else{ |
|
prev_input = get_network_output_layer(net, i-1); |
|
prev_delta = get_network_delta_layer(net, i-1); |
|
} |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
learn_convolutional_layer(layer, prev_input); |
|
if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta); |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
} |
|
else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
learn_connected_layer(layer, prev_input); |
|
if(i != 0) backward_connected_layer(layer, prev_input, prev_delta); |
|
} |
|
} |
|
} |
|
|
|
void train_network_batch(network net, batch b) |
|
{ |
|
int i,j; |
|
int k = get_network_output_size(net); |
|
int correct = 0; |
|
for(i = 0; i < b.n; ++i){ |
|
forward_network(net, b.images[i].data); |
|
image o = get_network_image(net); |
|
double *output = get_network_output(net); |
|
double *delta = get_network_delta(net); |
|
for(j = 0; j < k; ++j){ |
|
//printf("%f %f\n", b.truth[i][j], output[j]); |
|
delta[j] = b.truth[i][j]-output[j]; |
|
if(fabs(delta[j]) < .5) ++correct; |
|
//printf("%f\n", output[j]); |
|
} |
|
learn_network(net, b.images[i].data); |
|
update_network(net, .00001); |
|
} |
|
printf("Accuracy: %f\n", (double)correct/b.n); |
|
} |
|
|
|
int get_network_output_size_layer(network net, int i) |
|
{ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
image output = get_convolutional_image(layer); |
|
return output.h*output.w*output.c; |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
image output = get_maxpool_image(layer); |
|
return output.h*output.w*output.c; |
|
} |
|
else if(net.types[i] == CONNECTED){ |
|
connected_layer layer = *(connected_layer *)net.layers[i]; |
|
return layer.outputs; |
|
} |
|
return 0; |
|
} |
|
|
|
int get_network_output_size(network net) |
|
{ |
|
int i = net.n-1; |
|
return get_network_output_size_layer(net, i); |
|
} |
|
|
|
image get_network_image_layer(network net, int i) |
|
{ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
return get_convolutional_image(layer); |
|
} |
|
else if(net.types[i] == MAXPOOL){ |
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
|
return get_maxpool_image(layer); |
|
} |
|
return make_image(0,0,0); |
|
} |
|
|
|
image get_network_image(network net) |
|
{ |
|
int i; |
|
for(i = net.n-1; i >= 0; --i){ |
|
image m = get_network_image_layer(net, i); |
|
if(m.h != 0) return m; |
|
} |
|
return make_image(1,1,1); |
|
} |
|
|
|
void visualize_network(network net) |
|
{ |
|
int i; |
|
for(i = 0; i < 1; ++i){ |
|
if(net.types[i] == CONVOLUTIONAL){ |
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
|
visualize_convolutional_layer(layer); |
|
} |
|
} |
|
} |
|
|
|
|