You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

174 lines
5.4 KiB

// Oh boy, why am I about to do this....
#ifndef NETWORK_H
#define NETWORK_H
#include "darknet.h"
#include <stdint.h>
#include "layer.h"
#include "image.h"
#include "data.h"
#include "tree.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
typedef enum {
CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
} learning_rate_policy;
typedef struct network{
float *workspace;
int n;
int batch;
uint64_t *seen;
float epoch;
int subdivisions;
float momentum;
float decay;
layer *layers;
int outputs;
float *output;
learning_rate_policy policy;
float learning_rate;
float gamma;
float scale;
float power;
int time_steps;
int step;
int max_batches;
float *scales;
int *steps;
int num_steps;
int burn_in;
int cudnn_half;
int adam;
float B1;
float B2;
float eps;
int inputs;
int h, w, c;
int max_crop;
int min_crop;
int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1)
float angle;
float aspect;
float exposure;
float saturation;
float hue;
int small_object;
int gpu_index;
tree *hierarchy;
#ifdef GPU
float *input_state_gpu;
float **input_gpu;
float **truth_gpu;
float **input16_gpu;
float **output16_gpu;
size_t *max_input16_size;
size_t *max_output16_size;
int wait_stream;
#endif
} network;
typedef struct network_state {
float *truth;
float *input;
float *delta;
float *workspace;
int train;
int index;
network net;
} network_state;
*/
#ifdef GPU
float train_networks(network *nets, int n, data d, int interval);
void sync_nets(network *nets, int n, int interval);
float train_network_datum_gpu(network net, float *x, float *y);
float *network_predict_gpu(network net, float *input);
float * get_network_output_gpu_layer(network net, int i);
float * get_network_delta_gpu_layer(network net, int i);
float *get_network_output_gpu(network net);
void forward_network_gpu(network net, network_state state);
void backward_network_gpu(network net, network_state state);
void update_network_gpu(network net);
#endif
float get_current_rate(network net);
int get_current_batch(network net);
void free_network(network net);
void compare_networks(network n1, network n2, data d);
char *get_layer_string(LAYER_TYPE a);
network make_network(int n);
void forward_network(network net, network_state state);
void backward_network(network net, network_state state);
void update_network(network net);
float train_network(network net, data d);
float train_network_waitkey(network net, data d, int wait_key);
float train_network_batch(network net, data d, int n);
float train_network_sgd(network net, data d, int n);
float train_network_datum(network net, float *x, float *y);
matrix network_predict_data(network net, data test);
//LIB_API float *network_predict(network net, float *input);
//LIB_API float *network_predict_ptr(network *net, float *input);
float network_accuracy(network net, data d);
float *network_accuracies(network net, data d, int n);
float network_accuracy_multi(network net, data d, int n);
void top_predictions(network net, int n, int *index);
float *get_network_output(network net);
float *get_network_output_layer(network net, int i);
float *get_network_delta_layer(network net, int i);
float *get_network_delta(network net);
int get_network_output_size_layer(network net, int i);
int get_network_output_size(network net);
image get_network_image(network net);
image get_network_image_layer(network net, int i);
int get_predicted_class_network(network net);
void print_network(network net);
void visualize_network(network net);
int resize_network(network *net, int w, int h);
void set_batch_network(network *net, int b);
int get_network_input_size(network net);
float get_network_cost(network net);
//LIB_API layer* get_network_layer(network* net, int i);
//LIB_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
//LIB_API detection *make_network_boxes(network *net, float thresh, int *num);
//LIB_API void free_detections(detection *dets, int n);
//LIB_API void reset_rnn(network *net);
//LIB_API network *load_network_custom(char *cfg, char *weights, int clear, int batch);
//LIB_API network *load_network(char *cfg, char *weights, int clear);
//LIB_API float *network_predict_image(network *net, image im);
//LIB_API float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, network *existing_net);
//LIB_API void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port);
//LIB_API int network_width(network *net);
//LIB_API int network_height(network *net);
//LIB_API void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm);
int get_network_nuisance(network net);
int get_network_background(network net);
//LIB_API void fuse_conv_batchnorm(network net);
//LIB_API void calculate_binary_weights(network net);
network combine_train_valid_networks(network net_train, network net_map);
void copy_weights_net(network net_train, network *net_map);
void free_network_recurrent_state(network net);
void remember_network_recurrent_state(network net);
void restore_network_recurrent_state(network net);
#ifdef __cplusplus
}
#endif
#endif