mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
5.4 KiB
174 lines
5.4 KiB
// Oh boy, why am I about to do this.... |
|
#ifndef NETWORK_H |
|
#define NETWORK_H |
|
#include "darknet.h" |
|
|
|
#include <stdint.h> |
|
#include "layer.h" |
|
|
|
|
|
#include "image.h" |
|
#include "data.h" |
|
#include "tree.h" |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
/* |
|
typedef enum { |
|
CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM |
|
} learning_rate_policy; |
|
|
|
typedef struct network{ |
|
float *workspace; |
|
int n; |
|
int batch; |
|
uint64_t *seen; |
|
float epoch; |
|
int subdivisions; |
|
float momentum; |
|
float decay; |
|
layer *layers; |
|
int outputs; |
|
float *output; |
|
learning_rate_policy policy; |
|
|
|
float learning_rate; |
|
float gamma; |
|
float scale; |
|
float power; |
|
int time_steps; |
|
int step; |
|
int max_batches; |
|
float *scales; |
|
int *steps; |
|
int num_steps; |
|
int burn_in; |
|
int cudnn_half; |
|
|
|
int adam; |
|
float B1; |
|
float B2; |
|
float eps; |
|
|
|
int inputs; |
|
int h, w, c; |
|
int max_crop; |
|
int min_crop; |
|
int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1) |
|
float angle; |
|
float aspect; |
|
float exposure; |
|
float saturation; |
|
float hue; |
|
int small_object; |
|
|
|
int gpu_index; |
|
tree *hierarchy; |
|
|
|
#ifdef GPU |
|
float *input_state_gpu; |
|
|
|
float **input_gpu; |
|
float **truth_gpu; |
|
float **input16_gpu; |
|
float **output16_gpu; |
|
size_t *max_input16_size; |
|
size_t *max_output16_size; |
|
int wait_stream; |
|
#endif |
|
} network; |
|
|
|
|
|
typedef struct network_state { |
|
float *truth; |
|
float *input; |
|
float *delta; |
|
float *workspace; |
|
int train; |
|
int index; |
|
network net; |
|
} network_state; |
|
*/ |
|
|
|
#ifdef GPU |
|
float train_networks(network *nets, int n, data d, int interval); |
|
void sync_nets(network *nets, int n, int interval); |
|
float train_network_datum_gpu(network net, float *x, float *y); |
|
float *network_predict_gpu(network net, float *input); |
|
float * get_network_output_gpu_layer(network net, int i); |
|
float * get_network_delta_gpu_layer(network net, int i); |
|
float *get_network_output_gpu(network net); |
|
void forward_network_gpu(network net, network_state state); |
|
void backward_network_gpu(network net, network_state state); |
|
void update_network_gpu(network net); |
|
#endif |
|
|
|
float get_current_rate(network net); |
|
int get_current_batch(network net); |
|
void free_network(network net); |
|
void compare_networks(network n1, network n2, data d); |
|
char *get_layer_string(LAYER_TYPE a); |
|
|
|
network make_network(int n); |
|
void forward_network(network net, network_state state); |
|
void backward_network(network net, network_state state); |
|
void update_network(network net); |
|
|
|
float train_network(network net, data d); |
|
float train_network_waitkey(network net, data d, int wait_key); |
|
float train_network_batch(network net, data d, int n); |
|
float train_network_sgd(network net, data d, int n); |
|
float train_network_datum(network net, float *x, float *y); |
|
|
|
matrix network_predict_data(network net, data test); |
|
//LIB_API float *network_predict(network net, float *input); |
|
//LIB_API float *network_predict_ptr(network *net, float *input); |
|
float network_accuracy(network net, data d); |
|
float *network_accuracies(network net, data d, int n); |
|
float network_accuracy_multi(network net, data d, int n); |
|
void top_predictions(network net, int n, int *index); |
|
float *get_network_output(network net); |
|
float *get_network_output_layer(network net, int i); |
|
float *get_network_delta_layer(network net, int i); |
|
float *get_network_delta(network net); |
|
int get_network_output_size_layer(network net, int i); |
|
int get_network_output_size(network net); |
|
image get_network_image(network net); |
|
image get_network_image_layer(network net, int i); |
|
int get_predicted_class_network(network net); |
|
void print_network(network net); |
|
void visualize_network(network net); |
|
int resize_network(network *net, int w, int h); |
|
void set_batch_network(network *net, int b); |
|
int get_network_input_size(network net); |
|
float get_network_cost(network net); |
|
//LIB_API layer* get_network_layer(network* net, int i); |
|
//LIB_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter); |
|
//LIB_API detection *make_network_boxes(network *net, float thresh, int *num); |
|
//LIB_API void free_detections(detection *dets, int n); |
|
//LIB_API void reset_rnn(network *net); |
|
//LIB_API network *load_network_custom(char *cfg, char *weights, int clear, int batch); |
|
//LIB_API network *load_network(char *cfg, char *weights, int clear); |
|
//LIB_API float *network_predict_image(network *net, image im); |
|
//LIB_API float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, network *existing_net); |
|
//LIB_API void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map, int mjpeg_port); |
|
//LIB_API int network_width(network *net); |
|
//LIB_API int network_height(network *net); |
|
//LIB_API void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm); |
|
|
|
int get_network_nuisance(network net); |
|
int get_network_background(network net); |
|
//LIB_API void fuse_conv_batchnorm(network net); |
|
//LIB_API void calculate_binary_weights(network net); |
|
network combine_train_valid_networks(network net_train, network net_map); |
|
void copy_weights_net(network net_train, network *net_map); |
|
void free_network_recurrent_state(network net); |
|
void remember_network_recurrent_state(network net); |
|
void restore_network_recurrent_state(network net); |
|
|
|
#ifdef __cplusplus |
|
} |
|
#endif |
|
|
|
#endif
|
|
|