mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
298 lines
12 KiB
298 lines
12 KiB
#include "shortcut_layer.h" |
|
#include "convolutional_layer.h" |
|
#include "dark_cuda.h" |
|
#include "blas.h" |
|
#include "utils.h" |
|
#include "gemm.h" |
|
#include <stdio.h> |
|
#include <assert.h> |
|
|
|
layer make_shortcut_layer(int batch, int n, int *input_layers, int* input_sizes, int w, int h, int c, |
|
float **layers_output, float **layers_delta, float **layers_output_gpu, float **layers_delta_gpu, WEIGHTS_TYPE_T weights_type, WEIGHTS_NORMALIZATION_T weights_normalization, |
|
ACTIVATION activation, int train) |
|
{ |
|
fprintf(stderr, "Shortcut Layer: "); |
|
int i; |
|
for(i = 0; i < n; ++i) fprintf(stderr, "%d, ", input_layers[i]); |
|
|
|
layer l = { (LAYER_TYPE)0 }; |
|
l.train = train; |
|
l.type = SHORTCUT; |
|
l.batch = batch; |
|
l.activation = activation; |
|
l.n = n; |
|
l.input_layers = input_layers; |
|
l.input_sizes = input_sizes; |
|
l.layers_output = layers_output; |
|
l.layers_delta = layers_delta; |
|
l.weights_type = weights_type; |
|
l.weights_normalization = weights_normalization; |
|
l.learning_rate_scale = 1; // not necessary |
|
|
|
//l.w = w2; |
|
//l.h = h2; |
|
//l.c = c2; |
|
l.w = l.out_w = w; |
|
l.h = l.out_h = h; |
|
l.c = l.out_c = c; |
|
l.outputs = w*h*c; |
|
l.inputs = l.outputs; |
|
|
|
//if(w != w2 || h != h2 || c != c2) fprintf(stderr, " w = %d, w2 = %d, h = %d, h2 = %d, c = %d, c2 = %d \n", w, w2, h, h2, c, c2); |
|
|
|
l.index = l.input_layers[0]; |
|
|
|
|
|
if (train) l.delta = (float*)xcalloc(l.outputs * batch, sizeof(float)); |
|
l.output = (float*)xcalloc(l.outputs * batch, sizeof(float)); |
|
|
|
l.nweights = 0; |
|
if (l.weights_type == PER_FEATURE) l.nweights = (l.n + 1); |
|
else if (l.weights_type == PER_CHANNEL) l.nweights = (l.n + 1) * l.c; |
|
|
|
if (l.nweights > 0) { |
|
l.weights = (float*)calloc(l.nweights, sizeof(float)); |
|
float scale = sqrt(2. / l.nweights); |
|
for (i = 0; i < l.nweights; ++i) l.weights[i] = 1;// +0.01*rand_uniform(-1, 1);// scale*rand_uniform(-1, 1); // rand_normal(); |
|
|
|
if (train) l.weight_updates = (float*)calloc(l.nweights, sizeof(float)); |
|
l.update = update_shortcut_layer; |
|
} |
|
|
|
l.forward = forward_shortcut_layer; |
|
l.backward = backward_shortcut_layer; |
|
#ifndef GPU |
|
if (l.activation == SWISH || l.activation == MISH) l.activation_input = (float*)calloc(l.batch*l.outputs, sizeof(float)); |
|
#endif // GPU |
|
|
|
#ifdef GPU |
|
if (l.activation == SWISH || l.activation == MISH) l.activation_input_gpu = cuda_make_array(l.activation_input, l.batch*l.outputs); |
|
|
|
l.forward_gpu = forward_shortcut_layer_gpu; |
|
l.backward_gpu = backward_shortcut_layer_gpu; |
|
|
|
if (l.nweights > 0) { |
|
l.update_gpu = update_shortcut_layer_gpu; |
|
l.weights_gpu = cuda_make_array(l.weights, l.nweights); |
|
if (train) l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights); |
|
} |
|
|
|
if (train) l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch); |
|
l.output_gpu = cuda_make_array(l.output, l.outputs*batch); |
|
|
|
l.input_sizes_gpu = cuda_make_int_array_new_api(input_sizes, l.n); |
|
l.layers_output_gpu = (float**)cuda_make_array_pointers((void**)layers_output_gpu, l.n); |
|
l.layers_delta_gpu = (float**)cuda_make_array_pointers((void**)layers_delta_gpu, l.n); |
|
#endif // GPU |
|
|
|
l.bflops = l.out_w * l.out_h * l.out_c * l.n / 1000000000.; |
|
if (l.weights_type) l.bflops *= 2; |
|
fprintf(stderr, " wt = %d, wn = %d, outputs:%4d x%4d x%4d %5.3f BF\n", l.weights_type, l.weights_normalization, l.out_w, l.out_h, l.out_c, l.bflops); |
|
return l; |
|
} |
|
|
|
void resize_shortcut_layer(layer *l, int w, int h, network *net) |
|
{ |
|
//assert(l->w == l->out_w); |
|
//assert(l->h == l->out_h); |
|
l->w = l->out_w = w; |
|
l->h = l->out_h = h; |
|
l->outputs = w*h*l->out_c; |
|
l->inputs = l->outputs; |
|
if (l->train) l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float)); |
|
l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float)); |
|
|
|
int i; |
|
for (i = 0; i < l->n; ++i) { |
|
int index = l->input_layers[i]; |
|
l->input_sizes[i] = net->layers[index].outputs; |
|
l->layers_output[i] = net->layers[index].output; |
|
l->layers_delta[i] = net->layers[index].delta; |
|
|
|
assert(l->w == net->layers[index].out_w && l->h == net->layers[index].out_h); |
|
} |
|
|
|
if (l->activation == SWISH || l->activation == MISH) l->activation_input = (float*)realloc(l->activation_input, l->batch*l->outputs * sizeof(float)); |
|
|
|
#ifdef GPU |
|
cuda_free(l->output_gpu); |
|
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); |
|
|
|
if (l->train) { |
|
cuda_free(l->delta_gpu); |
|
l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); |
|
} |
|
|
|
float **layers_output_gpu = (float **)calloc(l->n, sizeof(float *)); |
|
float **layers_delta_gpu = (float **)calloc(l->n, sizeof(float *)); |
|
|
|
for (i = 0; i < l->n; ++i) { |
|
const int index = l->input_layers[i]; |
|
layers_output_gpu[i] = net->layers[index].output_gpu; |
|
layers_delta_gpu[i] = net->layers[index].delta_gpu; |
|
} |
|
|
|
memcpy_ongpu(l->input_sizes_gpu, l->input_sizes, l->n * sizeof(int)); |
|
memcpy_ongpu(l->layers_output_gpu, layers_output_gpu, l->n * sizeof(float*)); |
|
memcpy_ongpu(l->layers_delta_gpu, layers_delta_gpu, l->n * sizeof(float*)); |
|
|
|
free(layers_output_gpu); |
|
free(layers_delta_gpu); |
|
|
|
if (l->activation == SWISH || l->activation == MISH) { |
|
cuda_free(l->activation_input_gpu); |
|
l->activation_input_gpu = cuda_make_array(l->activation_input, l->batch*l->outputs); |
|
} |
|
#endif |
|
|
|
} |
|
|
|
void forward_shortcut_layer(const layer l, network_state state) |
|
{ |
|
int from_w = state.net.layers[l.index].w; |
|
int from_h = state.net.layers[l.index].h; |
|
int from_c = state.net.layers[l.index].c; |
|
|
|
if (l.nweights == 0 && l.n == 1 && from_w == l.w && from_h == l.h && from_c == l.c) { |
|
int size = l.batch * l.w * l.h * l.c; |
|
int i; |
|
#pragma omp parallel for |
|
for(i = 0; i < size; ++i) |
|
l.output[i] = state.input[i] + state.net.layers[l.index].output[i]; |
|
} |
|
else { |
|
shortcut_multilayer_cpu(l.outputs * l.batch, l.outputs, l.batch, l.n, l.input_sizes, l.layers_output, l.output, state.input, l.weights, l.nweights, l.weights_normalization); |
|
} |
|
|
|
//copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1); |
|
//shortcut_cpu(l.batch, from_w, from_h, from_c, state.net.layers[l.index].output, l.out_w, l.out_h, l.out_c, l.output); |
|
|
|
//activate_array(l.output, l.outputs*l.batch, l.activation); |
|
if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output); |
|
else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output); |
|
else activate_array_cpu_custom(l.output, l.outputs*l.batch, l.activation); |
|
} |
|
|
|
void backward_shortcut_layer(const layer l, network_state state) |
|
{ |
|
if (l.activation == SWISH) gradient_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.delta); |
|
else if (l.activation == MISH) gradient_array_mish(l.outputs*l.batch, l.activation_input, l.delta); |
|
else gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); |
|
|
|
backward_shortcut_multilayer_cpu(l.outputs * l.batch, l.outputs, l.batch, l.n, l.input_sizes, |
|
l.layers_delta, state.delta, l.delta, l.weights, l.weight_updates, l.nweights, state.input, l.layers_output, l.weights_normalization); |
|
|
|
//axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1); |
|
//shortcut_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta); |
|
} |
|
|
|
void update_shortcut_layer(layer l, int batch, float learning_rate_init, float momentum, float decay) |
|
{ |
|
if (l.nweights > 0) { |
|
float learning_rate = learning_rate_init*l.learning_rate_scale; |
|
//float momentum = a.momentum; |
|
//float decay = a.decay; |
|
//int batch = a.batch; |
|
|
|
axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1); |
|
axpy_cpu(l.nweights, learning_rate / batch, l.weight_updates, 1, l.weights, 1); |
|
scal_cpu(l.nweights, momentum, l.weight_updates, 1); |
|
} |
|
} |
|
|
|
#ifdef GPU |
|
void forward_shortcut_layer_gpu(const layer l, network_state state) |
|
{ |
|
//copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); |
|
//simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu); |
|
//shortcut_gpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu); |
|
|
|
//input_shortcut_gpu(state.input, l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu); |
|
|
|
//----------- |
|
//if (l.outputs == l.input_sizes[0]) |
|
//if(l.n == 1 && l.nweights == 0) |
|
//{ |
|
// input_shortcut_gpu(state.input, l.batch, state.net.layers[l.index].w, state.net.layers[l.index].h, state.net.layers[l.index].c, |
|
// state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu); |
|
//} |
|
//else |
|
{ |
|
shortcut_multilayer_gpu(l.outputs, l.batch, l.n, l.input_sizes_gpu, l.layers_output_gpu, l.output_gpu, state.input, l.weights_gpu, l.nweights, l.weights_normalization); |
|
} |
|
|
|
if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); |
|
else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); |
|
else activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
|
|
|
} |
|
|
|
void backward_shortcut_layer_gpu(const layer l, network_state state) |
|
{ |
|
if (l.activation == SWISH) gradient_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); |
|
else if (l.activation == MISH) gradient_array_mish_ongpu(l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); |
|
else gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
|
|
|
backward_shortcut_multilayer_gpu(l.outputs, l.batch, l.n, l.input_sizes_gpu, l.layers_delta_gpu, state.delta, l.delta_gpu, |
|
l.weights_gpu, l.weight_updates_gpu, l.nweights, state.input, l.layers_output_gpu, l.weights_normalization); |
|
|
|
//axpy_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1, state.delta, 1); |
|
//shortcut_gpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta_gpu, l.w, l.h, l.c, state.net.layers[l.index].delta_gpu); |
|
} |
|
|
|
void update_shortcut_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale) |
|
{ |
|
if (l.nweights > 0) { |
|
float learning_rate = learning_rate_init*l.learning_rate_scale; |
|
//float momentum = a.momentum; |
|
//float decay = a.decay; |
|
//int batch = a.batch; |
|
|
|
// Loss scale for Mixed-Precision on Tensor-Cores |
|
if (loss_scale != 1.0) { |
|
if(l.weight_updates_gpu && l.nweights > 0) scal_ongpu(l.nweights, 1.0 / loss_scale, l.weight_updates_gpu, 1); |
|
} |
|
|
|
reset_nan_and_inf(l.weight_updates_gpu, l.nweights); |
|
fix_nan_and_inf(l.weights_gpu, l.nweights); |
|
|
|
//constrain_weight_updates_ongpu(l.nweights, 1, l.weights_gpu, l.weight_updates_gpu); |
|
constrain_ongpu(l.nweights, 1, l.weight_updates_gpu, 1); |
|
|
|
/* |
|
cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights); |
|
cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights); |
|
CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream())); |
|
for (int i = 0; i < l.nweights; ++i) printf(" %f, ", l.weight_updates[i]); |
|
printf(" l.nweights = %d - updates \n", l.nweights); |
|
for (int i = 0; i < l.nweights; ++i) printf(" %f, ", l.weights[i]); |
|
printf(" l.nweights = %d \n\n", l.nweights); |
|
*/ |
|
|
|
//axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); |
|
axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); |
|
scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1); |
|
|
|
//fill_ongpu(l.nweights, 0, l.weight_updates_gpu, 1); |
|
|
|
//if (l.clip) { |
|
// constrain_ongpu(l.nweights, l.clip, l.weights_gpu, 1); |
|
//} |
|
} |
|
} |
|
|
|
void pull_shortcut_layer(layer l) |
|
{ |
|
constrain_ongpu(l.nweights, 1, l.weight_updates_gpu, 1); |
|
cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights); |
|
cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream())); |
|
} |
|
|
|
void push_shortcut_layer(layer l) |
|
{ |
|
cuda_push_array(l.weights_gpu, l.weights, l.nweights); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
#endif
|
|
|