mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
285 lines
7.2 KiB
285 lines
7.2 KiB
#include "yolo_v2_class.hpp" |
|
|
|
#include "network.h" |
|
|
|
extern "C" { |
|
#include "detection_layer.h" |
|
#include "region_layer.h" |
|
#include "cost_layer.h" |
|
#include "utils.h" |
|
#include "parser.h" |
|
#include "box.h" |
|
#include "image.h" |
|
#include "demo.h" |
|
#include "option_list.h" |
|
#include "stb_image.h" |
|
} |
|
//#include <sys/time.h> |
|
|
|
#include <vector> |
|
#include <iostream> |
|
#include <algorithm> |
|
|
|
#define FRAMES 3 |
|
|
|
struct detector_gpu_t{ |
|
float **probs; |
|
box *boxes; |
|
network net; |
|
image images[FRAMES]; |
|
float *avg; |
|
float *predictions[FRAMES]; |
|
}; |
|
|
|
|
|
YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id) |
|
{ |
|
int old_gpu_index; |
|
#ifdef GPU |
|
cudaGetDevice(&old_gpu_index); |
|
#endif |
|
|
|
detector_gpu_ptr = std::make_shared<detector_gpu_t>(); |
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
|
|
|
#ifdef GPU |
|
cudaSetDevice(gpu_id); |
|
#endif |
|
network &net = detector_gpu.net; |
|
net.gpu_index = gpu_id; |
|
//gpu_index = i; |
|
|
|
char *cfgfile = const_cast<char *>(cfg_filename.data()); |
|
char *weightfile = const_cast<char *>(weight_filename.data()); |
|
|
|
net = parse_network_cfg(cfgfile); |
|
if (weightfile) { |
|
load_weights(&net, weightfile); |
|
} |
|
set_batch_network(&net, 1); |
|
net.gpu_index = gpu_id; |
|
|
|
layer l = net.layers[net.n - 1]; |
|
int j; |
|
|
|
detector_gpu.avg = (float *)calloc(l.outputs, sizeof(float)); |
|
for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float)); |
|
for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3); |
|
|
|
detector_gpu.boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box)); |
|
detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *)); |
|
for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float)); |
|
|
|
#ifdef GPU |
|
cudaSetDevice(old_gpu_index); |
|
#endif |
|
} |
|
|
|
|
|
YOLODLL_API Detector::~Detector() |
|
{ |
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
|
layer l = detector_gpu.net.layers[detector_gpu.net.n - 1]; |
|
|
|
free(detector_gpu.avg); |
|
for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]); |
|
for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data); |
|
|
|
for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]); |
|
free(detector_gpu.boxes); |
|
free(detector_gpu.probs); |
|
|
|
int old_gpu_index; |
|
#ifdef GPU |
|
cudaGetDevice(&old_gpu_index); |
|
cudaSetDevice(detector_gpu.net.gpu_index); |
|
#endif |
|
|
|
free_network(detector_gpu.net); |
|
|
|
#ifdef GPU |
|
cudaSetDevice(old_gpu_index); |
|
#endif |
|
} |
|
|
|
YOLODLL_API int Detector::get_net_width() { |
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
|
return detector_gpu.net.w; |
|
} |
|
YOLODLL_API int Detector::get_net_height() { |
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
|
return detector_gpu.net.h; |
|
} |
|
|
|
|
|
YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh) |
|
{ |
|
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; }); |
|
*image_ptr = load_image(image_filename); |
|
return detect(*image_ptr, thresh); |
|
} |
|
|
|
static image load_image_stb(char *filename, int channels) |
|
{ |
|
int w, h, c; |
|
unsigned char *data = stbi_load(filename, &w, &h, &c, channels); |
|
if (!data) |
|
throw std::runtime_error("file not found"); |
|
if (channels) c = channels; |
|
int i, j, k; |
|
image im = make_image(w, h, c); |
|
for (k = 0; k < c; ++k) { |
|
for (j = 0; j < h; ++j) { |
|
for (i = 0; i < w; ++i) { |
|
int dst_index = i + w*j + w*h*k; |
|
int src_index = k + c*i + c*w*j; |
|
im.data[dst_index] = (float)data[src_index] / 255.; |
|
} |
|
} |
|
} |
|
free(data); |
|
return im; |
|
} |
|
|
|
YOLODLL_API image_t Detector::load_image(std::string image_filename) |
|
{ |
|
char *input = const_cast<char *>(image_filename.data()); |
|
image im = load_image_stb(input, 3); |
|
|
|
image_t img; |
|
img.c = im.c; |
|
img.data = im.data; |
|
img.h = im.h; |
|
img.w = im.w; |
|
|
|
return img; |
|
} |
|
|
|
|
|
YOLODLL_API void Detector::free_image(image_t m) |
|
{ |
|
if (m.data) { |
|
free(m.data); |
|
} |
|
} |
|
|
|
YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh) |
|
{ |
|
|
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
|
network &net = detector_gpu.net; |
|
int old_gpu_index; |
|
#ifdef GPU |
|
cudaGetDevice(&old_gpu_index); |
|
cudaSetDevice(net.gpu_index); |
|
#endif |
|
//std::cout << "net.gpu_index = " << net.gpu_index << std::endl; |
|
|
|
//float nms = .4; |
|
|
|
image im; |
|
im.c = img.c; |
|
im.data = img.data; |
|
im.h = img.h; |
|
im.w = img.w; |
|
|
|
image sized; |
|
|
|
if (net.w == im.w && net.h == im.h) { |
|
sized = make_image(im.w, im.h, im.c); |
|
memcpy(sized.data, im.data, im.w*im.h*im.c * sizeof(float)); |
|
} |
|
else |
|
sized = resize_image(im, net.w, net.h); |
|
|
|
layer l = net.layers[net.n - 1]; |
|
|
|
float *X = sized.data; |
|
|
|
network_predict(net, X); |
|
|
|
get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0); |
|
if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms); |
|
//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); |
|
|
|
std::vector<bbox_t> bbox_vec; |
|
|
|
for (size_t i = 0; i < (l.w*l.h*l.n); ++i) { |
|
box b = detector_gpu.boxes[i]; |
|
int const obj_id = max_index(detector_gpu.probs[i], l.classes); |
|
float const prob = detector_gpu.probs[i][obj_id]; |
|
|
|
if (prob > thresh) |
|
{ |
|
bbox_t bbox; |
|
bbox.x = std::max((double)0, (b.x - b.w / 2.)*im.w); |
|
bbox.y = std::max((double)0, (b.y - b.h / 2.)*im.h); |
|
bbox.w = b.w*im.w; |
|
bbox.h = b.h*im.h; |
|
bbox.obj_id = obj_id; |
|
bbox.prob = prob; |
|
bbox.track_id = 0; |
|
|
|
bbox_vec.push_back(bbox); |
|
} |
|
} |
|
|
|
if(sized.data) |
|
free(sized.data); |
|
|
|
#ifdef GPU |
|
cudaSetDevice(old_gpu_index); |
|
#endif |
|
|
|
return bbox_vec; |
|
} |
|
|
|
YOLODLL_API std::vector<bbox_t> Detector::tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story) |
|
{ |
|
bool prev_track_id_present = false; |
|
for (auto &i : prev_bbox_vec_deque) |
|
if (i.size() > 0) prev_track_id_present = true; |
|
|
|
static unsigned int track_id = 1; |
|
|
|
if (!prev_track_id_present) { |
|
//track_id = 1; |
|
for (size_t i = 0; i < cur_bbox_vec.size(); ++i) |
|
cur_bbox_vec[i].track_id = track_id++; |
|
prev_bbox_vec_deque.push_front(cur_bbox_vec); |
|
if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back(); |
|
return cur_bbox_vec; |
|
} |
|
|
|
std::vector<unsigned int> dist_vec(cur_bbox_vec.size(), std::numeric_limits<unsigned int>::max()); |
|
|
|
for (auto &prev_bbox_vec : prev_bbox_vec_deque) { |
|
for (auto &i : prev_bbox_vec) { |
|
int cur_index = -1; |
|
for (size_t m = 0; m < cur_bbox_vec.size(); ++m) { |
|
bbox_t const& k = cur_bbox_vec[m]; |
|
if (i.obj_id == k.obj_id) { |
|
unsigned int cur_dist = sqrt(((float)i.x - k.x)*((float)i.x - k.x) + ((float)i.y - k.y)*((float)i.y - k.y)); |
|
if (cur_dist < 100 && (k.track_id == 0 || dist_vec[m] > cur_dist)) { |
|
dist_vec[m] = cur_dist; |
|
cur_index = m; |
|
} |
|
} |
|
} |
|
|
|
bool track_id_absent = !std::any_of(cur_bbox_vec.begin(), cur_bbox_vec.end(), [&](bbox_t const& b) { return b.track_id == i.track_id; }); |
|
|
|
if (cur_index >= 0 && track_id_absent) |
|
cur_bbox_vec[cur_index].track_id = i.track_id; |
|
} |
|
} |
|
|
|
for (size_t i = 0; i < cur_bbox_vec.size(); ++i) |
|
if (cur_bbox_vec[i].track_id == 0) |
|
cur_bbox_vec[i].track_id = track_id++; |
|
|
|
prev_bbox_vec_deque.push_front(cur_bbox_vec); |
|
if (prev_bbox_vec_deque.size() > frames_story) prev_bbox_vec_deque.pop_back(); |
|
|
|
return cur_bbox_vec; |
|
} |