mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
773 lines
30 KiB
773 lines
30 KiB
#include "yolo_layer.h" |
|
#include "activations.h" |
|
#include "blas.h" |
|
#include "box.h" |
|
#include "dark_cuda.h" |
|
#include "utils.h" |
|
|
|
#include <stdio.h> |
|
#include <assert.h> |
|
#include <string.h> |
|
#include <stdlib.h> |
|
|
|
layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes) |
|
{ |
|
int i; |
|
layer l = { (LAYER_TYPE)0 }; |
|
l.type = YOLO; |
|
|
|
l.n = n; |
|
l.total = total; |
|
l.batch = batch; |
|
l.h = h; |
|
l.w = w; |
|
l.c = n*(classes + 4 + 1); |
|
l.out_w = l.w; |
|
l.out_h = l.h; |
|
l.out_c = l.c; |
|
l.classes = classes; |
|
l.cost = (float*)calloc(1, sizeof(float)); |
|
l.biases = (float*)calloc(total * 2, sizeof(float)); |
|
if(mask) l.mask = mask; |
|
else{ |
|
l.mask = (int*)calloc(n, sizeof(int)); |
|
for(i = 0; i < n; ++i){ |
|
l.mask[i] = i; |
|
} |
|
} |
|
l.bias_updates = (float*)calloc(n * 2, sizeof(float)); |
|
l.outputs = h*w*n*(classes + 4 + 1); |
|
l.inputs = l.outputs; |
|
l.max_boxes = max_boxes; |
|
l.truths = l.max_boxes*(4 + 1); // 90*(4 + 1); |
|
l.delta = (float*)calloc(batch * l.outputs, sizeof(float)); |
|
l.output = (float*)calloc(batch * l.outputs, sizeof(float)); |
|
for(i = 0; i < total*2; ++i){ |
|
l.biases[i] = .5; |
|
} |
|
|
|
l.forward = forward_yolo_layer; |
|
l.backward = backward_yolo_layer; |
|
#ifdef GPU |
|
l.forward_gpu = forward_yolo_layer_gpu; |
|
l.backward_gpu = backward_yolo_layer_gpu; |
|
l.output_gpu = cuda_make_array(l.output, batch*l.outputs); |
|
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
|
|
|
free(l.output); |
|
if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1; |
|
else { |
|
cudaGetLastError(); // reset CUDA-error |
|
l.output = (float*)calloc(batch * l.outputs, sizeof(float)); |
|
} |
|
|
|
free(l.delta); |
|
if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1; |
|
else { |
|
cudaGetLastError(); // reset CUDA-error |
|
l.delta = (float*)calloc(batch * l.outputs, sizeof(float)); |
|
} |
|
#endif |
|
|
|
fprintf(stderr, "yolo\n"); |
|
srand(time(0)); |
|
|
|
return l; |
|
} |
|
|
|
void resize_yolo_layer(layer *l, int w, int h) |
|
{ |
|
l->w = w; |
|
l->h = h; |
|
|
|
l->outputs = h*w*l->n*(l->classes + 4 + 1); |
|
l->inputs = l->outputs; |
|
|
|
if (!l->output_pinned) l->output = (float*)realloc(l->output, l->batch*l->outputs * sizeof(float)); |
|
if (!l->delta_pinned) l->delta = (float*)realloc(l->delta, l->batch*l->outputs*sizeof(float)); |
|
|
|
#ifdef GPU |
|
if (l->output_pinned) { |
|
CHECK_CUDA(cudaFreeHost(l->output)); |
|
if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) { |
|
cudaGetLastError(); // reset CUDA-error |
|
l->output = (float*)calloc(l->batch * l->outputs, sizeof(float)); |
|
l->output_pinned = 0; |
|
} |
|
} |
|
|
|
if (l->delta_pinned) { |
|
CHECK_CUDA(cudaFreeHost(l->delta)); |
|
if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) { |
|
cudaGetLastError(); // reset CUDA-error |
|
l->delta = (float*)calloc(l->batch * l->outputs, sizeof(float)); |
|
l->delta_pinned = 0; |
|
} |
|
} |
|
|
|
cuda_free(l->delta_gpu); |
|
cuda_free(l->output_gpu); |
|
|
|
l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); |
|
l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
|
#endif |
|
} |
|
|
|
box get_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride) |
|
{ |
|
box b; |
|
// ln - natural logarithm (base = e) |
|
// x` = t.x * lw - i; // x = ln(x`/(1-x`)) // x - output of previous conv-layer |
|
// y` = t.y * lh - i; // y = ln(y`/(1-y`)) // y - output of previous conv-layer |
|
// w = ln(t.w * net.w / anchors_w); // w - output of previous conv-layer |
|
// h = ln(t.h * net.h / anchors_h); // h - output of previous conv-layer |
|
b.x = (i + x[index + 0*stride]) / lw; |
|
b.y = (j + x[index + 1*stride]) / lh; |
|
b.w = exp(x[index + 2*stride]) * biases[2*n] / w; |
|
b.h = exp(x[index + 3*stride]) * biases[2*n+1] / h; |
|
return b; |
|
} |
|
|
|
ious delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, int accumulate) |
|
{ |
|
ious all_ious = { 0 }; |
|
// i - step in layer width |
|
// j - step in layer height |
|
// Returns a box in absolute coordinates |
|
box pred = get_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride); |
|
all_ious.iou = box_iou(pred, truth); |
|
all_ious.giou = box_giou(pred, truth); |
|
all_ious.diou = box_diou(pred, truth); |
|
all_ious.ciou = box_ciou(pred, truth); |
|
// avoid nan in dx_box_iou |
|
if (pred.w == 0) { pred.w = 1.0; } |
|
if (pred.h == 0) { pred.h = 1.0; } |
|
if (iou_loss == MSE) // old loss |
|
{ |
|
float tx = (truth.x*lw - i); |
|
float ty = (truth.y*lh - j); |
|
float tw = log(truth.w*w / biases[2 * n]); |
|
float th = log(truth.h*h / biases[2 * n + 1]); |
|
|
|
// accumulate delta |
|
delta[index + 0 * stride] += scale * (tx - x[index + 0 * stride]) * iou_normalizer; |
|
delta[index + 1 * stride] += scale * (ty - x[index + 1 * stride]) * iou_normalizer; |
|
delta[index + 2 * stride] += scale * (tw - x[index + 2 * stride]) * iou_normalizer; |
|
delta[index + 3 * stride] += scale * (th - x[index + 3 * stride]) * iou_normalizer; |
|
} |
|
else { |
|
// https://github.com/generalized-iou/g-darknet |
|
// https://arxiv.org/abs/1902.09630v2 |
|
// https://giou.stanford.edu/ |
|
all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss); |
|
|
|
// jacobian^t (transpose) |
|
//float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr); |
|
//float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db); |
|
//float dw = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr)); |
|
//float dh = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db)); |
|
|
|
// jacobian^t (transpose) |
|
float dx = all_ious.dx_iou.dt; |
|
float dy = all_ious.dx_iou.db; |
|
float dw = all_ious.dx_iou.dl; |
|
float dh = all_ious.dx_iou.dr; |
|
|
|
// predict exponential, apply gradient of e^delta_t ONLY for w,h |
|
dw *= exp(x[index + 2 * stride]); |
|
dh *= exp(x[index + 3 * stride]); |
|
|
|
// normalize iou weight |
|
dx *= iou_normalizer; |
|
dy *= iou_normalizer; |
|
dw *= iou_normalizer; |
|
dh *= iou_normalizer; |
|
|
|
if (!accumulate) { |
|
delta[index + 0 * stride] = 0; |
|
delta[index + 1 * stride] = 0; |
|
delta[index + 2 * stride] = 0; |
|
delta[index + 3 * stride] = 0; |
|
} |
|
|
|
// accumulate delta |
|
delta[index + 0 * stride] += dx; |
|
delta[index + 1 * stride] += dy; |
|
delta[index + 2 * stride] += dw; |
|
delta[index + 3 * stride] += dh; |
|
} |
|
|
|
return all_ious; |
|
} |
|
|
|
void averages_yolo_deltas(int class_index, int box_index, int stride, int classes, float *delta) |
|
{ |
|
|
|
int classes_in_one_box = 0; |
|
int c; |
|
for (c = 0; c < classes; ++c) { |
|
if (delta[class_index + stride*c] > 0) classes_in_one_box++; |
|
} |
|
|
|
if (classes_in_one_box > 0) { |
|
delta[box_index + 0 * stride] /= classes_in_one_box; |
|
delta[box_index + 1 * stride] /= classes_in_one_box; |
|
delta[box_index + 2 * stride] /= classes_in_one_box; |
|
delta[box_index + 3 * stride] /= classes_in_one_box; |
|
} |
|
} |
|
|
|
void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss, float label_smooth_eps) |
|
{ |
|
int n; |
|
if (delta[index + stride*class_id]){ |
|
delta[index + stride*class_id] = (1 - label_smooth_eps) - output[index + stride*class_id]; |
|
if(avg_cat) *avg_cat += output[index + stride*class_id]; |
|
return; |
|
} |
|
// Focal loss |
|
if (focal_loss) { |
|
// Focal Loss |
|
float alpha = 0.5; // 0.25 or 0.5 |
|
//float gamma = 2; // hardcoded in many places of the grad-formula |
|
|
|
int ti = index + stride*class_id; |
|
float pt = output[ti] + 0.000000000000001F; |
|
// http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d |
|
float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832 |
|
//float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss |
|
|
|
for (n = 0; n < classes; ++n) { |
|
delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]); |
|
|
|
delta[index + stride*n] *= alpha*grad; |
|
|
|
if (n == class_id) *avg_cat += output[index + stride*n]; |
|
} |
|
} |
|
else { |
|
// default |
|
for (n = 0; n < classes; ++n) { |
|
delta[index + stride*n] = ((n == class_id) ? (1 - label_smooth_eps) : (0 + label_smooth_eps/classes)) - output[index + stride*n]; |
|
if (n == class_id && avg_cat) *avg_cat += output[index + stride*n]; |
|
} |
|
} |
|
} |
|
|
|
int compare_yolo_class(float *output, int classes, int class_index, int stride, float objectness, int class_id, float conf_thresh) |
|
{ |
|
int j; |
|
for (j = 0; j < classes; ++j) { |
|
//float prob = objectness * output[class_index + stride*j]; |
|
float prob = output[class_index + stride*j]; |
|
if (prob > conf_thresh) { |
|
return 1; |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
static int entry_index(layer l, int batch, int location, int entry) |
|
{ |
|
int n = location / (l.w*l.h); |
|
int loc = location % (l.w*l.h); |
|
return batch*l.outputs + n*l.w*l.h*(4+l.classes+1) + entry*l.w*l.h + loc; |
|
} |
|
|
|
void forward_yolo_layer(const layer l, network_state state) |
|
{ |
|
int i, j, b, t, n; |
|
memcpy(l.output, state.input, l.outputs*l.batch * sizeof(float)); |
|
|
|
#ifndef GPU |
|
for (b = 0; b < l.batch; ++b) { |
|
for (n = 0; n < l.n; ++n) { |
|
int index = entry_index(l, b, n*l.w*l.h, 0); |
|
activate_array(l.output + index, 2 * l.w*l.h, LOGISTIC); // x,y, |
|
scal_add_cpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1); // scale x,y |
|
index = entry_index(l, b, n*l.w*l.h, 4); |
|
activate_array(l.output + index, (1 + l.classes)*l.w*l.h, LOGISTIC); |
|
} |
|
} |
|
#endif |
|
|
|
// delta is zeroed |
|
memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); |
|
if (!state.train) return; |
|
//float avg_iou = 0; |
|
float tot_iou = 0; |
|
float tot_giou = 0; |
|
float tot_diou = 0; |
|
float tot_ciou = 0; |
|
float tot_iou_loss = 0; |
|
float tot_giou_loss = 0; |
|
float tot_diou_loss = 0; |
|
float tot_ciou_loss = 0; |
|
float recall = 0; |
|
float recall75 = 0; |
|
float avg_cat = 0; |
|
float avg_obj = 0; |
|
float avg_anyobj = 0; |
|
int count = 0; |
|
int class_count = 0; |
|
*(l.cost) = 0; |
|
for (b = 0; b < l.batch; ++b) { |
|
for (j = 0; j < l.h; ++j) { |
|
for (i = 0; i < l.w; ++i) { |
|
for (n = 0; n < l.n; ++n) { |
|
int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0); |
|
box pred = get_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h); |
|
float best_match_iou = 0; |
|
int best_match_t = 0; |
|
float best_iou = 0; |
|
int best_t = 0; |
|
for (t = 0; t < l.max_boxes; ++t) { |
|
box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1); |
|
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4]; |
|
if (class_id >= l.classes) { |
|
printf(" Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1); |
|
printf(" truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f, class_id = %d \n", truth.x, truth.y, truth.w, truth.h, class_id); |
|
getchar(); |
|
continue; // if label contains class_id more than number of classes in the cfg-file |
|
} |
|
if (!truth.x) break; // continue; |
|
|
|
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1); |
|
int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4); |
|
float objectness = l.output[obj_index]; |
|
int class_id_match = compare_yolo_class(l.output, l.classes, class_index, l.w*l.h, objectness, class_id, 0.25f); |
|
|
|
float iou = box_iou(pred, truth); |
|
if (iou > best_match_iou && class_id_match == 1) { |
|
best_match_iou = iou; |
|
best_match_t = t; |
|
} |
|
if (iou > best_iou) { |
|
best_iou = iou; |
|
best_t = t; |
|
} |
|
} |
|
int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4); |
|
avg_anyobj += l.output[obj_index]; |
|
l.delta[obj_index] = l.cls_normalizer * (0 - l.output[obj_index]); |
|
if (best_match_iou > l.ignore_thresh) { |
|
l.delta[obj_index] = 0; |
|
} |
|
if (best_iou > l.truth_thresh) { |
|
l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]); |
|
|
|
int class_id = state.truth[best_t*(4 + 1) + b*l.truths + 4]; |
|
if (l.map) class_id = l.map[class_id]; |
|
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1); |
|
delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.focal_loss, l.label_smooth_eps); |
|
box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1); |
|
delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer, l.iou_loss, 1); |
|
} |
|
} |
|
} |
|
} |
|
for (t = 0; t < l.max_boxes; ++t) { |
|
box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1); |
|
if (truth.x < 0 || truth.y < 0 || truth.x > 1 || truth.y > 1 || truth.w < 0 || truth.h < 0) { |
|
char buff[256]; |
|
printf(" Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", truth.x, truth.y, truth.w, truth.h); |
|
sprintf(buff, "echo \"Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f\" >> bad_label.list", |
|
truth.x, truth.y, truth.w, truth.h); |
|
system(buff); |
|
} |
|
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4]; |
|
if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file |
|
|
|
if (!truth.x) break; // continue; |
|
float best_iou = 0; |
|
int best_n = 0; |
|
i = (truth.x * l.w); |
|
j = (truth.y * l.h); |
|
box truth_shift = truth; |
|
truth_shift.x = truth_shift.y = 0; |
|
for (n = 0; n < l.total; ++n) { |
|
box pred = { 0 }; |
|
pred.w = l.biases[2 * n] / state.net.w; |
|
pred.h = l.biases[2 * n + 1] / state.net.h; |
|
float iou = box_iou(pred, truth_shift); |
|
if (iou > best_iou) { |
|
best_iou = iou; |
|
best_n = n; |
|
} |
|
} |
|
|
|
int mask_n = int_index(l.mask, best_n, l.n); |
|
if (mask_n >= 0) { |
|
int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0); |
|
ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer, l.iou_loss, 1); |
|
|
|
// range is 0 <= 1 |
|
tot_iou += all_ious.iou; |
|
tot_iou_loss += 1 - all_ious.iou; |
|
// range is -1 <= giou <= 1 |
|
tot_giou += all_ious.giou; |
|
tot_giou_loss += 1 - all_ious.giou; |
|
|
|
tot_diou += all_ious.diou; |
|
tot_diou_loss += 1 - all_ious.diou; |
|
|
|
tot_ciou += all_ious.ciou; |
|
tot_ciou_loss += 1 - all_ious.ciou; |
|
|
|
int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4); |
|
avg_obj += l.output[obj_index]; |
|
l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]); |
|
|
|
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4]; |
|
if (l.map) class_id = l.map[class_id]; |
|
int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1); |
|
delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.focal_loss, l.label_smooth_eps); |
|
|
|
++count; |
|
++class_count; |
|
if (all_ious.iou > .5) recall += 1; |
|
if (all_ious.iou > .75) recall75 += 1; |
|
} |
|
|
|
// iou_thresh |
|
for (n = 0; n < l.total; ++n) { |
|
int mask_n = int_index(l.mask, n, l.n); |
|
if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) { |
|
box pred = { 0 }; |
|
pred.w = l.biases[2 * n] / state.net.w; |
|
pred.h = l.biases[2 * n + 1] / state.net.h; |
|
float iou = box_iou(pred, truth_shift); |
|
// iou, n |
|
|
|
if (iou > l.iou_thresh) { |
|
int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0); |
|
ious all_ious = delta_yolo_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer, l.iou_loss, 1); |
|
|
|
// range is 0 <= 1 |
|
tot_iou += all_ious.iou; |
|
tot_iou_loss += 1 - all_ious.iou; |
|
// range is -1 <= giou <= 1 |
|
tot_giou += all_ious.giou; |
|
tot_giou_loss += 1 - all_ious.giou; |
|
|
|
tot_diou += all_ious.diou; |
|
tot_diou_loss += 1 - all_ious.diou; |
|
|
|
tot_ciou += all_ious.ciou; |
|
tot_ciou_loss += 1 - all_ious.ciou; |
|
|
|
int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4); |
|
avg_obj += l.output[obj_index]; |
|
l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]); |
|
|
|
int class_id = state.truth[t*(4 + 1) + b*l.truths + 4]; |
|
if (l.map) class_id = l.map[class_id]; |
|
int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1); |
|
delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.focal_loss, l.label_smooth_eps); |
|
|
|
++count; |
|
++class_count; |
|
if (all_ious.iou > .5) recall += 1; |
|
if (all_ious.iou > .75) recall75 += 1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// averages the deltas obtained by the function: delta_yolo_box()_accumulate |
|
for (j = 0; j < l.h; ++j) { |
|
for (i = 0; i < l.w; ++i) { |
|
for (n = 0; n < l.n; ++n) { |
|
int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0); |
|
int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1); |
|
const int stride = l.w*l.h; |
|
|
|
averages_yolo_deltas(class_index, box_index, stride, l.classes, l.delta); |
|
} |
|
} |
|
} |
|
} |
|
|
|
//*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); |
|
//printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", state.index, avg_iou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count); |
|
|
|
int stride = l.w*l.h; |
|
float* no_iou_loss_delta = (float *)calloc(l.batch * l.outputs, sizeof(float)); |
|
memcpy(no_iou_loss_delta, l.delta, l.batch * l.outputs * sizeof(float)); |
|
for (b = 0; b < l.batch; ++b) { |
|
for (j = 0; j < l.h; ++j) { |
|
for (i = 0; i < l.w; ++i) { |
|
for (n = 0; n < l.n; ++n) { |
|
int index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0); |
|
no_iou_loss_delta[index + 0 * stride] = 0; |
|
no_iou_loss_delta[index + 1 * stride] = 0; |
|
no_iou_loss_delta[index + 2 * stride] = 0; |
|
no_iou_loss_delta[index + 3 * stride] = 0; |
|
} |
|
} |
|
} |
|
} |
|
float classification_loss = l.cls_normalizer * pow(mag_array(no_iou_loss_delta, l.outputs * l.batch), 2); |
|
free(no_iou_loss_delta); |
|
float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2); |
|
float iou_loss = loss - classification_loss; |
|
|
|
float avg_iou_loss = 0; |
|
// gIOU loss + MSE (objectness) loss |
|
if (l.iou_loss == MSE) { |
|
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); |
|
} |
|
else { |
|
// Always compute classification loss both for iou + cls loss and for logging with mse loss |
|
// TODO: remove IOU loss fields before computing MSE on class |
|
// probably split into two arrays |
|
|
|
if (l.iou_loss == GIOU) { |
|
avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_giou_loss / count) : 0; |
|
} |
|
else { |
|
avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_iou_loss / count) : 0; |
|
} |
|
*(l.cost) = avg_iou_loss + classification_loss; |
|
} |
|
|
|
loss /= l.batch; |
|
classification_loss /= l.batch; |
|
iou_loss /= l.batch; |
|
|
|
printf("v3 (%s loss, Normalizer: (iou: %f, cls: %f) Region %d Avg (IOU: %f, GIOU: %f), Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d, loss = %f, class_loss = %f, iou_loss = %f\n", |
|
(l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.cls_normalizer, state.index, tot_iou / count, tot_giou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count, |
|
loss, classification_loss, iou_loss); |
|
} |
|
|
|
void backward_yolo_layer(const layer l, network_state state) |
|
{ |
|
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); |
|
} |
|
|
|
// Converts output of the network to detection boxes |
|
// w,h: image width,height |
|
// netw,neth: network width,height |
|
// relative: 1 (all callers seems to pass TRUE) |
|
void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter) |
|
{ |
|
int i; |
|
// network height (or width) |
|
int new_w = 0; |
|
// network height (or width) |
|
int new_h = 0; |
|
// Compute scale given image w,h vs network w,h |
|
// I think this "rotates" the image to match network to input image w/h ratio |
|
// new_h and new_w are really just network width and height |
|
if (letter) { |
|
if (((float)netw / w) < ((float)neth / h)) { |
|
new_w = netw; |
|
new_h = (h * netw) / w; |
|
} |
|
else { |
|
new_h = neth; |
|
new_w = (w * neth) / h; |
|
} |
|
} |
|
else { |
|
new_w = netw; |
|
new_h = neth; |
|
} |
|
// difference between network width and "rotated" width |
|
float deltaw = netw - new_w; |
|
// difference between network height and "rotated" height |
|
float deltah = neth - new_h; |
|
// ratio between rotated network width and network width |
|
float ratiow = (float)new_w / netw; |
|
// ratio between rotated network width and network width |
|
float ratioh = (float)new_h / neth; |
|
for (i = 0; i < n; ++i) { |
|
|
|
box b = dets[i].bbox; |
|
// x = ( x - (deltaw/2)/netw ) / ratiow; |
|
// x - [(1/2 the difference of the network width and rotated width) / (network width)] |
|
b.x = (b.x - deltaw / 2. / netw) / ratiow; |
|
b.y = (b.y - deltah / 2. / neth) / ratioh; |
|
// scale to match rotation of incoming image |
|
b.w *= 1 / ratiow; |
|
b.h *= 1 / ratioh; |
|
|
|
// relative seems to always be == 1, I don't think we hit this condition, ever. |
|
if (!relative) { |
|
b.x *= w; |
|
b.w *= w; |
|
b.y *= h; |
|
b.h *= h; |
|
} |
|
|
|
dets[i].bbox = b; |
|
} |
|
} |
|
|
|
/* |
|
void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter) |
|
{ |
|
int i; |
|
int new_w=0; |
|
int new_h=0; |
|
if (letter) { |
|
if (((float)netw / w) < ((float)neth / h)) { |
|
new_w = netw; |
|
new_h = (h * netw) / w; |
|
} |
|
else { |
|
new_h = neth; |
|
new_w = (w * neth) / h; |
|
} |
|
} |
|
else { |
|
new_w = netw; |
|
new_h = neth; |
|
} |
|
for (i = 0; i < n; ++i){ |
|
box b = dets[i].bbox; |
|
b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); |
|
b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); |
|
b.w *= (float)netw/new_w; |
|
b.h *= (float)neth/new_h; |
|
if(!relative){ |
|
b.x *= w; |
|
b.w *= w; |
|
b.y *= h; |
|
b.h *= h; |
|
} |
|
dets[i].bbox = b; |
|
} |
|
} |
|
*/ |
|
|
|
int yolo_num_detections(layer l, float thresh) |
|
{ |
|
int i, n; |
|
int count = 0; |
|
for (i = 0; i < l.w*l.h; ++i){ |
|
for(n = 0; n < l.n; ++n){ |
|
int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4); |
|
if(l.output[obj_index] > thresh){ |
|
++count; |
|
} |
|
} |
|
} |
|
return count; |
|
} |
|
|
|
void avg_flipped_yolo(layer l) |
|
{ |
|
int i,j,n,z; |
|
float *flip = l.output + l.outputs; |
|
for (j = 0; j < l.h; ++j) { |
|
for (i = 0; i < l.w/2; ++i) { |
|
for (n = 0; n < l.n; ++n) { |
|
for(z = 0; z < l.classes + 4 + 1; ++z){ |
|
int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i; |
|
int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1); |
|
float swap = flip[i1]; |
|
flip[i1] = flip[i2]; |
|
flip[i2] = swap; |
|
if(z == 0){ |
|
flip[i1] = -flip[i1]; |
|
flip[i2] = -flip[i2]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
for(i = 0; i < l.outputs; ++i){ |
|
l.output[i] = (l.output[i] + flip[i])/2.; |
|
} |
|
} |
|
|
|
int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter) |
|
{ |
|
//printf("\n l.batch = %d, l.w = %d, l.h = %d, l.n = %d \n", l.batch, l.w, l.h, l.n); |
|
int i,j,n; |
|
float *predictions = l.output; |
|
// This snippet below is not necessary |
|
// Need to comment it in order to batch processing >= 2 images |
|
//if (l.batch == 2) avg_flipped_yolo(l); |
|
int count = 0; |
|
for (i = 0; i < l.w*l.h; ++i){ |
|
int row = i / l.w; |
|
int col = i % l.w; |
|
for(n = 0; n < l.n; ++n){ |
|
int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4); |
|
float objectness = predictions[obj_index]; |
|
//if(objectness <= thresh) continue; // incorrect behavior for Nan values |
|
if (objectness > thresh) { |
|
//printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n); |
|
int box_index = entry_index(l, 0, n*l.w*l.h + i, 0); |
|
dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h); |
|
dets[count].objectness = objectness; |
|
dets[count].classes = l.classes; |
|
for (j = 0; j < l.classes; ++j) { |
|
int class_index = entry_index(l, 0, n*l.w*l.h + i, 4 + 1 + j); |
|
float prob = objectness*predictions[class_index]; |
|
dets[count].prob[j] = (prob > thresh) ? prob : 0; |
|
} |
|
++count; |
|
} |
|
} |
|
} |
|
correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter); |
|
return count; |
|
} |
|
|
|
#ifdef GPU |
|
|
|
void forward_yolo_layer_gpu(const layer l, network_state state) |
|
{ |
|
//copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); |
|
simple_copy_ongpu(l.batch*l.inputs, state.input, l.output_gpu); |
|
int b, n; |
|
for (b = 0; b < l.batch; ++b){ |
|
for(n = 0; n < l.n; ++n){ |
|
int index = entry_index(l, b, n*l.w*l.h, 0); |
|
// y = 1./(1. + exp(-x)) |
|
// x = ln(y/(1-y)) // ln - natural logarithm (base = e) |
|
// if(y->1) x -> inf |
|
// if(y->0) x -> -inf |
|
activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); // x,y |
|
if (l.scale_x_y != 1) scal_add_ongpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1); // scale x,y |
|
index = entry_index(l, b, n*l.w*l.h, 4); |
|
activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC); // classes and objectness |
|
} |
|
} |
|
if(!state.train || l.onlyforward){ |
|
//cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); |
|
cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs); |
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
return; |
|
} |
|
|
|
float *in_cpu = (float *)calloc(l.batch*l.inputs, sizeof(float)); |
|
cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); |
|
memcpy(in_cpu, l.output, l.batch*l.outputs*sizeof(float)); |
|
float *truth_cpu = 0; |
|
if (state.truth) { |
|
int num_truth = l.batch*l.truths; |
|
truth_cpu = (float *)calloc(num_truth, sizeof(float)); |
|
cuda_pull_array(state.truth, truth_cpu, num_truth); |
|
} |
|
network_state cpu_state = state; |
|
cpu_state.net = state.net; |
|
cpu_state.index = state.index; |
|
cpu_state.train = state.train; |
|
cpu_state.truth = truth_cpu; |
|
cpu_state.input = in_cpu; |
|
forward_yolo_layer(l, cpu_state); |
|
//forward_yolo_layer(l, state); |
|
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); |
|
free(in_cpu); |
|
if (cpu_state.truth) free(cpu_state.truth); |
|
} |
|
|
|
void backward_yolo_layer_gpu(const layer l, network_state state) |
|
{ |
|
axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1); |
|
} |
|
#endif
|
|
|