mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1009 lines
12 KiB
1009 lines
12 KiB
# https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/lite/efficientnet_lite_builder.py |
|
# (width_coefficient, depth_coefficient, resolution, dropout_rate) |
|
# 'efficientnet-lite3': (1.2, 1.4, 280, 0.3), |
|
# |
|
#_DEFAULT_BLOCKS_ARGS = [ |
|
# 'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25', |
|
# 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25', |
|
# 'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25', |
|
# 'r1_k3_s11_e6_i192_o320_se0.25', |
|
#] |
|
|
|
[net] |
|
# Training |
|
batch=120 |
|
subdivisions=6 |
|
height=288 |
|
width=288 |
|
channels=3 |
|
momentum=0.9 |
|
decay=0.0005 |
|
max_crop=320 |
|
|
|
cutmix=1 |
|
mosaic=1 |
|
label_smooth_eps=0.1 |
|
|
|
burn_in=1000 |
|
learning_rate=0.256 |
|
policy=step |
|
step=10000 |
|
scale=0.96 |
|
max_batches=1600000 |
|
momentum=0.9 |
|
decay=0.00005 |
|
|
|
angle=7 |
|
hue=.1 |
|
saturation=.75 |
|
exposure=.75 |
|
aspect=.75 |
|
|
|
|
|
### CONV1 - 1 (1) |
|
# conv1 |
|
[convolutional] |
|
filters=40 #32 |
|
size=3 |
|
pad=1 |
|
stride=2 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
|
|
### CONV2 - MBConv1 - 1 (2) |
|
# conv2_1_expand |
|
[convolutional] |
|
filters=40 #32 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv2_1_dwise |
|
[convolutional] |
|
groups=40 #32 |
|
filters=40 #32 |
|
size=3 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv2_1_linear |
|
[convolutional] |
|
filters=16 #16 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV2 - MBConv1 - 2 (2) |
|
# conv2_1_expand |
|
[convolutional] |
|
filters=40 #32 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv2_1_dwise |
|
[convolutional] |
|
groups=40 #32 |
|
filters=40 #32 |
|
size=3 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv2_1_linear |
|
[convolutional] |
|
filters=16 #16 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV3 - MBConv6 - 1 (3) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_3_1 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv2_2_expand |
|
[convolutional] |
|
filters=112 #96 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv2_2_dwise |
|
[convolutional] |
|
groups=112 #96 |
|
filters=112 #96 |
|
size=3 |
|
pad=1 |
|
stride=2 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv2_2_linear |
|
[convolutional] |
|
filters=32 #24 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV3 - MBConv6 - 2 (3) |
|
# conv3_1_expand |
|
[convolutional] |
|
filters=176 #144 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv3_1_dwise |
|
[convolutional] |
|
groups=176 #144 |
|
filters=176 #144 |
|
size=3 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv3_1_linear |
|
[convolutional] |
|
filters=32 #24 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV3 - MBConv6 - 3 (3) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_3_1 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv3_1_expand |
|
[convolutional] |
|
filters=176 #144 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv3_1_dwise |
|
[convolutional] |
|
groups=176 #144 |
|
filters=176 #144 |
|
size=3 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv3_1_linear |
|
[convolutional] |
|
filters=32 #24 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
|
|
### CONV4 - MBConv6 - 1 (3) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_3_1 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_3_2_expand |
|
[convolutional] |
|
filters=176 #144 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_3_2_dwise |
|
[convolutional] |
|
groups=176 #144 |
|
filters=176 #144 |
|
size=5 |
|
pad=1 |
|
stride=2 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_3_2_linear |
|
[convolutional] |
|
filters=48 #40 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV4 - MBConv6 - 2 (3) |
|
# conv_4_1_expand |
|
[convolutional] |
|
filters=232 #192 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_1_dwise |
|
[convolutional] |
|
groups=232 #192 |
|
filters=232 #192 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_1_linear |
|
[convolutional] |
|
filters=48 #40 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV4 - MBConv6 - 3 (3) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_4_2 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_4_1_expand |
|
[convolutional] |
|
filters=232 #192 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_1_dwise |
|
[convolutional] |
|
groups=232 #192 |
|
filters=232 #192 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_1_linear |
|
[convolutional] |
|
filters=48 #40 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
|
|
|
|
### CONV5 - MBConv6 - 1 (5) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_4_2 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_4_3_expand |
|
[convolutional] |
|
filters=232 #192 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_3_dwise |
|
[convolutional] |
|
groups=232 #192 |
|
filters=232 #192 |
|
size=3 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_3_linear |
|
[convolutional] |
|
filters=96 #80 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV5 - MBConv6 - 2 (5) |
|
# conv_4_4_expand |
|
[convolutional] |
|
filters=464 #384 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_4_dwise |
|
[convolutional] |
|
groups=464 #384 |
|
filters=464 #384 |
|
size=3 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_4_linear |
|
[convolutional] |
|
filters=96 #80 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV5 - MBConv6 - 3 (5) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_4_4 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_4_5_expand |
|
[convolutional] |
|
filters=464 #384 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_5_dwise |
|
[convolutional] |
|
groups=464 #384 |
|
filters=464 #384 |
|
size=3 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_5_linear |
|
[convolutional] |
|
filters=96 #80 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV5 - MBConv6 - 4 (5) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_4_4 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_4_5_expand |
|
[convolutional] |
|
filters=464 #384 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_5_dwise |
|
[convolutional] |
|
groups=464 #384 |
|
filters=464 #384 |
|
size=3 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_5_linear |
|
[convolutional] |
|
filters=96 #80 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
|
|
### CONV5 - MBConv6 - 5 (5) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_4_4 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_4_5_expand |
|
[convolutional] |
|
filters=464 #384 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_5_dwise |
|
[convolutional] |
|
groups=464 #384 |
|
filters=464 #384 |
|
size=3 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_5_linear |
|
[convolutional] |
|
filters=96 #80 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
|
|
### CONV6 - MBConv6 - 1 (5) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_4_6 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_4_7_expand |
|
[convolutional] |
|
filters=464 #384 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_7_dwise |
|
[convolutional] |
|
groups=464 #384 |
|
filters=464 #384 |
|
size=5 |
|
pad=1 |
|
stride=2 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_4_7_linear |
|
[convolutional] |
|
filters=136 #112 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV6 - MBConv6 - 2 (5) |
|
# conv_5_1_expand |
|
[convolutional] |
|
filters=688 #576 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_5_1_dwise |
|
[convolutional] |
|
groups=688 #576 |
|
filters=688 #576 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_5_1_linear |
|
[convolutional] |
|
filters=136 #112 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV6 - MBConv6 - 3 (5) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_5_1 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_5_2_expand |
|
[convolutional] |
|
filters=688 #576 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_5_2_dwise |
|
[convolutional] |
|
groups=688 #576 |
|
filters=688 #576 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_5_2_linear |
|
[convolutional] |
|
filters=136 #112 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
|
|
### CONV6 - MBConv6 - 4 (5) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_5_1 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_5_2_expand |
|
[convolutional] |
|
filters=688 #576 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_5_2_dwise |
|
[convolutional] |
|
groups=688 #576 |
|
filters=688 #576 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_5_2_linear |
|
[convolutional] |
|
filters=136 #112 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV6 - MBConv6 - 5 (5) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_5_1 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_5_2_expand |
|
[convolutional] |
|
filters=688 #576 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_5_2_dwise |
|
[convolutional] |
|
groups=688 #576 |
|
filters=688 #576 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_5_2_linear |
|
[convolutional] |
|
filters=136 #112 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
|
|
### CONV7 - MBConv6 - 1 (6) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_5_2 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_5_3_expand |
|
[convolutional] |
|
filters=688 #576 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_5_3_dwise |
|
[convolutional] |
|
groups=688 #576 |
|
filters=688 #576 |
|
size=5 |
|
pad=1 |
|
stride=2 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
|
|
# conv_5_3_linear |
|
[convolutional] |
|
filters=232 #192 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV7 - MBConv6 - 2 (6) |
|
# conv_6_1_expand |
|
[convolutional] |
|
filters=1152 #960 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_6_1_dwise |
|
[convolutional] |
|
groups=1152 #960 |
|
filters=1152 #960 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_6_1_linear |
|
[convolutional] |
|
filters=232 #192 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV7 - MBConv6 - 3 (6) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_6_1 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_6_2_expand |
|
[convolutional] |
|
filters=1152 #960 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_6_2_dwise |
|
[convolutional] |
|
groups=1152 #960 |
|
filters=1152 #960 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_6_2_linear |
|
[convolutional] |
|
filters=232 #192 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV7 - MBConv6 - 4 (6) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_6_1 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_6_2_expand |
|
[convolutional] |
|
filters=1152 #960 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_6_2_dwise |
|
[convolutional] |
|
groups=1152 #960 |
|
filters=1152 #960 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_6_2_linear |
|
[convolutional] |
|
filters=232 #192 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV7 - MBConv6 - 5 (6) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_6_1 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_6_2_expand |
|
[convolutional] |
|
filters=1152 #960 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_6_2_dwise |
|
[convolutional] |
|
groups=1152 #960 |
|
filters=1152 #960 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_6_2_linear |
|
[convolutional] |
|
filters=232 #192 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
### CONV7 - MBConv6 - 6 (6) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_6_1 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_6_2_expand |
|
[convolutional] |
|
filters=1152 #960 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_6_2_dwise |
|
[convolutional] |
|
groups=1152 #960 |
|
filters=1152 #960 |
|
size=5 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
|
|
|
|
# conv_6_2_linear |
|
[convolutional] |
|
filters=232 #192 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
|
|
### CONV8 - MBConv6 - 1 (1) |
|
# dropout only before residual connection |
|
[dropout] |
|
probability=.3 |
|
|
|
# block_6_2 |
|
[shortcut] |
|
from=-5 |
|
activation=linear |
|
|
|
# conv_6_3_expand |
|
[convolutional] |
|
filters=1152 #960 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
# conv_6_3_dwise |
|
[convolutional] |
|
groups=1152 #960 |
|
filters=1152 #960 |
|
size=3 |
|
stride=1 |
|
pad=1 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
|
|
|
|
# conv_6_3_linear |
|
[convolutional] |
|
filters=384 #320 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=linear |
|
|
|
|
|
|
|
|
|
### CONV9 - Conv2d 1x1 |
|
# conv_6_4 |
|
[convolutional] |
|
filters=1536 #1280 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
batch_normalize=1 |
|
activation=relu6 |
|
|
|
|
|
[avgpool] |
|
|
|
[dropout] |
|
probability=.3 |
|
|
|
[convolutional] |
|
filters=1000 |
|
size=1 |
|
stride=1 |
|
pad=0 |
|
activation=linear |
|
|
|
[softmax] |
|
groups=1 |
|
|
|
#[cost] |
|
#type=sse |
|
|
|
|