mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1145 lines
30 KiB
1145 lines
30 KiB
#include "data.h" |
|
#include "utils.h" |
|
#include "image.h" |
|
#include "cuda.h" |
|
|
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; |
|
|
|
list *get_paths(char *filename) |
|
{ |
|
char *path; |
|
FILE *file = fopen(filename, "r"); |
|
if(!file) file_error(filename); |
|
list *lines = make_list(); |
|
while((path=fgetl(file))){ |
|
list_insert(lines, path); |
|
} |
|
fclose(file); |
|
return lines; |
|
} |
|
|
|
/* |
|
char **get_random_paths_indexes(char **paths, int n, int m, int *indexes) |
|
{ |
|
char **random_paths = calloc(n, sizeof(char*)); |
|
int i; |
|
pthread_mutex_lock(&mutex); |
|
for(i = 0; i < n; ++i){ |
|
int index = rand()%m; |
|
indexes[i] = index; |
|
random_paths[i] = paths[index]; |
|
if(i == 0) printf("%s\n", paths[index]); |
|
} |
|
pthread_mutex_unlock(&mutex); |
|
return random_paths; |
|
} |
|
*/ |
|
|
|
char **get_random_paths(char **paths, int n, int m) |
|
{ |
|
char **random_paths = calloc(n, sizeof(char*)); |
|
int i; |
|
pthread_mutex_lock(&mutex); |
|
for(i = 0; i < n; ++i){ |
|
int index = rand()%m; |
|
random_paths[i] = paths[index]; |
|
if(i == 0) printf("%s\n", paths[index]); |
|
} |
|
pthread_mutex_unlock(&mutex); |
|
return random_paths; |
|
} |
|
|
|
char **find_replace_paths(char **paths, int n, char *find, char *replace) |
|
{ |
|
char **replace_paths = calloc(n, sizeof(char*)); |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
char *replaced = find_replace(paths[i], find, replace); |
|
replace_paths[i] = copy_string(replaced); |
|
} |
|
return replace_paths; |
|
} |
|
|
|
matrix load_image_paths_gray(char **paths, int n, int w, int h) |
|
{ |
|
int i; |
|
matrix X; |
|
X.rows = n; |
|
X.vals = calloc(X.rows, sizeof(float*)); |
|
X.cols = 0; |
|
|
|
for(i = 0; i < n; ++i){ |
|
image im = load_image(paths[i], w, h, 3); |
|
|
|
image gray = grayscale_image(im); |
|
free_image(im); |
|
im = gray; |
|
|
|
X.vals[i] = im.data; |
|
X.cols = im.h*im.w*im.c; |
|
} |
|
return X; |
|
} |
|
|
|
matrix load_image_paths(char **paths, int n, int w, int h) |
|
{ |
|
int i; |
|
matrix X; |
|
X.rows = n; |
|
X.vals = calloc(X.rows, sizeof(float*)); |
|
X.cols = 0; |
|
|
|
for(i = 0; i < n; ++i){ |
|
image im = load_image_color(paths[i], w, h); |
|
X.vals[i] = im.data; |
|
X.cols = im.h*im.w*im.c; |
|
} |
|
return X; |
|
} |
|
|
|
matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) |
|
{ |
|
int i; |
|
matrix X; |
|
X.rows = n; |
|
X.vals = calloc(X.rows, sizeof(float*)); |
|
X.cols = 0; |
|
|
|
for(i = 0; i < n; ++i){ |
|
image im = load_image_color(paths[i], 0, 0); |
|
image crop = random_augment_image(im, angle, aspect, min, max, size); |
|
int flip = rand()%2; |
|
if (flip) flip_image(crop); |
|
random_distort_image(crop, hue, saturation, exposure); |
|
|
|
/* |
|
show_image(im, "orig"); |
|
show_image(crop, "crop"); |
|
cvWaitKey(0); |
|
*/ |
|
free_image(im); |
|
X.vals[i] = crop.data; |
|
X.cols = crop.h*crop.w*crop.c; |
|
} |
|
return X; |
|
} |
|
|
|
|
|
box_label *read_boxes(char *filename, int *n) |
|
{ |
|
box_label *boxes = calloc(1, sizeof(box_label)); |
|
FILE *file = fopen(filename, "r"); |
|
if(!file) file_error(filename); |
|
float x, y, h, w; |
|
int id; |
|
int count = 0; |
|
while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){ |
|
boxes = realloc(boxes, (count+1)*sizeof(box_label)); |
|
boxes[count].id = id; |
|
boxes[count].x = x; |
|
boxes[count].y = y; |
|
boxes[count].h = h; |
|
boxes[count].w = w; |
|
boxes[count].left = x - w/2; |
|
boxes[count].right = x + w/2; |
|
boxes[count].top = y - h/2; |
|
boxes[count].bottom = y + h/2; |
|
++count; |
|
} |
|
fclose(file); |
|
*n = count; |
|
return boxes; |
|
} |
|
|
|
void randomize_boxes(box_label *b, int n) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
box_label swap = b[i]; |
|
int index = rand()%n; |
|
b[i] = b[index]; |
|
b[index] = swap; |
|
} |
|
} |
|
|
|
void correct_boxes(box_label *boxes, int n, float dx, float dy, float sx, float sy, int flip) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
boxes[i].left = boxes[i].left * sx - dx; |
|
boxes[i].right = boxes[i].right * sx - dx; |
|
boxes[i].top = boxes[i].top * sy - dy; |
|
boxes[i].bottom = boxes[i].bottom* sy - dy; |
|
|
|
if(flip){ |
|
float swap = boxes[i].left; |
|
boxes[i].left = 1. - boxes[i].right; |
|
boxes[i].right = 1. - swap; |
|
} |
|
|
|
boxes[i].left = constrain(0, 1, boxes[i].left); |
|
boxes[i].right = constrain(0, 1, boxes[i].right); |
|
boxes[i].top = constrain(0, 1, boxes[i].top); |
|
boxes[i].bottom = constrain(0, 1, boxes[i].bottom); |
|
|
|
boxes[i].x = (boxes[i].left+boxes[i].right)/2; |
|
boxes[i].y = (boxes[i].top+boxes[i].bottom)/2; |
|
boxes[i].w = (boxes[i].right - boxes[i].left); |
|
boxes[i].h = (boxes[i].bottom - boxes[i].top); |
|
|
|
boxes[i].w = constrain(0, 1, boxes[i].w); |
|
boxes[i].h = constrain(0, 1, boxes[i].h); |
|
} |
|
} |
|
|
|
void fill_truth_swag(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy) |
|
{ |
|
char *labelpath = find_replace(path, "images", "labels"); |
|
labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
|
|
|
labelpath = find_replace(labelpath, ".jpg", ".txt"); |
|
labelpath = find_replace(labelpath, ".JPG", ".txt"); |
|
labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
|
int count = 0; |
|
box_label *boxes = read_boxes(labelpath, &count); |
|
randomize_boxes(boxes, count); |
|
correct_boxes(boxes, count, dx, dy, sx, sy, flip); |
|
float x,y,w,h; |
|
int id; |
|
int i; |
|
|
|
for (i = 0; i < count && i < 30; ++i) { |
|
x = boxes[i].x; |
|
y = boxes[i].y; |
|
w = boxes[i].w; |
|
h = boxes[i].h; |
|
id = boxes[i].id; |
|
|
|
if (w < .0 || h < .0) continue; |
|
|
|
int index = (4+classes) * i; |
|
|
|
truth[index++] = x; |
|
truth[index++] = y; |
|
truth[index++] = w; |
|
truth[index++] = h; |
|
|
|
if (id < classes) truth[index+id] = 1; |
|
} |
|
free(boxes); |
|
} |
|
|
|
void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int flip, float dx, float dy, float sx, float sy) |
|
{ |
|
char *labelpath = find_replace(path, "images", "labels"); |
|
labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
|
|
|
labelpath = find_replace(labelpath, ".jpg", ".txt"); |
|
labelpath = find_replace(labelpath, ".png", ".txt"); |
|
labelpath = find_replace(labelpath, ".JPG", ".txt"); |
|
labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
|
int count = 0; |
|
box_label *boxes = read_boxes(labelpath, &count); |
|
randomize_boxes(boxes, count); |
|
correct_boxes(boxes, count, dx, dy, sx, sy, flip); |
|
float x,y,w,h; |
|
int id; |
|
int i; |
|
|
|
for (i = 0; i < count; ++i) { |
|
x = boxes[i].x; |
|
y = boxes[i].y; |
|
w = boxes[i].w; |
|
h = boxes[i].h; |
|
id = boxes[i].id; |
|
|
|
if (w < .01 || h < .01) continue; |
|
|
|
int col = (int)(x*num_boxes); |
|
int row = (int)(y*num_boxes); |
|
|
|
x = x*num_boxes - col; |
|
y = y*num_boxes - row; |
|
|
|
int index = (col+row*num_boxes)*(5+classes); |
|
if (truth[index]) continue; |
|
truth[index++] = 1; |
|
|
|
if (id < classes) truth[index+id] = 1; |
|
index += classes; |
|
|
|
truth[index++] = x; |
|
truth[index++] = y; |
|
truth[index++] = w; |
|
truth[index++] = h; |
|
} |
|
free(boxes); |
|
} |
|
|
|
void fill_truth_detection(char *path, int num_boxes, float *truth, int classes, int flip, float dx, float dy, float sx, float sy) |
|
{ |
|
char *labelpath = find_replace(path, "images", "labels"); |
|
labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
|
|
|
labelpath = find_replace(labelpath, ".jpg", ".txt"); |
|
labelpath = find_replace(labelpath, ".png", ".txt"); |
|
labelpath = find_replace(labelpath, ".JPG", ".txt"); |
|
labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
|
int count = 0; |
|
box_label *boxes = read_boxes(labelpath, &count); |
|
randomize_boxes(boxes, count); |
|
correct_boxes(boxes, count, dx, dy, sx, sy, flip); |
|
if(count > num_boxes) count = num_boxes; |
|
float x,y,w,h; |
|
int id; |
|
int i; |
|
|
|
for (i = 0; i < count; ++i) { |
|
x = boxes[i].x; |
|
y = boxes[i].y; |
|
w = boxes[i].w; |
|
h = boxes[i].h; |
|
id = boxes[i].id; |
|
|
|
if (w < .01 || h < .01) continue; |
|
|
|
truth[i*5+0] = x; |
|
truth[i*5+1] = y; |
|
truth[i*5+2] = w; |
|
truth[i*5+3] = h; |
|
truth[i*5+4] = id; |
|
} |
|
free(boxes); |
|
} |
|
|
|
#define NUMCHARS 37 |
|
|
|
void print_letters(float *pred, int n) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
int index = max_index(pred+i*NUMCHARS, NUMCHARS); |
|
printf("%c", int_to_alphanum(index)); |
|
} |
|
printf("\n"); |
|
} |
|
|
|
void fill_truth_captcha(char *path, int n, float *truth) |
|
{ |
|
char *begin = strrchr(path, '/'); |
|
++begin; |
|
int i; |
|
for(i = 0; i < strlen(begin) && i < n && begin[i] != '.'; ++i){ |
|
int index = alphanum_to_int(begin[i]); |
|
if(index > 35) printf("Bad %c\n", begin[i]); |
|
truth[i*NUMCHARS+index] = 1; |
|
} |
|
for(;i < n; ++i){ |
|
truth[i*NUMCHARS + NUMCHARS-1] = 1; |
|
} |
|
} |
|
|
|
data load_data_captcha(char **paths, int n, int m, int k, int w, int h) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = load_image_paths(paths, n, w, h); |
|
d.y = make_matrix(n, k*NUMCHARS); |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
fill_truth_captcha(paths[i], k, d.y.vals[i]); |
|
} |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
data load_data_captcha_encode(char **paths, int n, int m, int w, int h) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = load_image_paths(paths, n, w, h); |
|
d.X.cols = 17100; |
|
d.y = d.X; |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
void fill_truth(char *path, char **labels, int k, float *truth) |
|
{ |
|
int i; |
|
memset(truth, 0, k*sizeof(float)); |
|
int count = 0; |
|
for(i = 0; i < k; ++i){ |
|
if(strstr(path, labels[i])){ |
|
truth[i] = 1; |
|
++count; |
|
} |
|
} |
|
if(count != 1) printf("Too many or too few labels: %d, %s\n", count, path); |
|
} |
|
|
|
matrix load_labels_paths(char **paths, int n, char **labels, int k) |
|
{ |
|
matrix y = make_matrix(n, k); |
|
int i; |
|
for(i = 0; i < n && labels; ++i){ |
|
fill_truth(paths[i], labels, k, y.vals[i]); |
|
} |
|
return y; |
|
} |
|
|
|
matrix load_tags_paths(char **paths, int n, int k) |
|
{ |
|
matrix y = make_matrix(n, k); |
|
int i; |
|
int count = 0; |
|
for(i = 0; i < n; ++i){ |
|
char *label = find_replace(paths[i], "imgs", "labels"); |
|
label = find_replace(label, "_iconl.jpeg", ".txt"); |
|
FILE *file = fopen(label, "r"); |
|
if(!file){ |
|
label = find_replace(label, "labels", "labels2"); |
|
file = fopen(label, "r"); |
|
if(!file) continue; |
|
} |
|
++count; |
|
int tag; |
|
while(fscanf(file, "%d", &tag) == 1){ |
|
if(tag < k){ |
|
y.vals[i][tag] = 1; |
|
} |
|
} |
|
fclose(file); |
|
} |
|
printf("%d/%d\n", count, n); |
|
return y; |
|
} |
|
|
|
char **get_labels(char *filename) |
|
{ |
|
list *plist = get_paths(filename); |
|
char **labels = (char **)list_to_array(plist); |
|
free_list(plist); |
|
return labels; |
|
} |
|
|
|
void free_data(data d) |
|
{ |
|
if(!d.shallow){ |
|
free_matrix(d.X); |
|
free_matrix(d.y); |
|
}else{ |
|
free(d.X.vals); |
|
free(d.y.vals); |
|
} |
|
} |
|
|
|
data load_data_region(int n, char **paths, int m, int w, int h, int size, int classes, float jitter, float hue, float saturation, float exposure) |
|
{ |
|
char **random_paths = get_random_paths(paths, n, m); |
|
int i; |
|
data d = {0}; |
|
d.shallow = 0; |
|
|
|
d.X.rows = n; |
|
d.X.vals = calloc(d.X.rows, sizeof(float*)); |
|
d.X.cols = h*w*3; |
|
|
|
|
|
int k = size*size*(5+classes); |
|
d.y = make_matrix(n, k); |
|
for(i = 0; i < n; ++i){ |
|
image orig = load_image_color(random_paths[i], 0, 0); |
|
|
|
int oh = orig.h; |
|
int ow = orig.w; |
|
|
|
int dw = (ow*jitter); |
|
int dh = (oh*jitter); |
|
|
|
int pleft = rand_uniform(-dw, dw); |
|
int pright = rand_uniform(-dw, dw); |
|
int ptop = rand_uniform(-dh, dh); |
|
int pbot = rand_uniform(-dh, dh); |
|
|
|
int swidth = ow - pleft - pright; |
|
int sheight = oh - ptop - pbot; |
|
|
|
float sx = (float)swidth / ow; |
|
float sy = (float)sheight / oh; |
|
|
|
int flip = rand()%2; |
|
image cropped = crop_image(orig, pleft, ptop, swidth, sheight); |
|
|
|
float dx = ((float)pleft/ow)/sx; |
|
float dy = ((float)ptop /oh)/sy; |
|
|
|
image sized = resize_image(cropped, w, h); |
|
if(flip) flip_image(sized); |
|
random_distort_image(sized, hue, saturation, exposure); |
|
d.X.vals[i] = sized.data; |
|
|
|
fill_truth_region(random_paths[i], d.y.vals[i], classes, size, flip, dx, dy, 1./sx, 1./sy); |
|
|
|
free_image(orig); |
|
free_image(cropped); |
|
} |
|
free(random_paths); |
|
return d; |
|
} |
|
|
|
data load_data_compare(int n, char **paths, int m, int classes, int w, int h) |
|
{ |
|
if(m) paths = get_random_paths(paths, 2*n, m); |
|
int i,j; |
|
data d = {0}; |
|
d.shallow = 0; |
|
|
|
d.X.rows = n; |
|
d.X.vals = calloc(d.X.rows, sizeof(float*)); |
|
d.X.cols = h*w*6; |
|
|
|
int k = 2*(classes); |
|
d.y = make_matrix(n, k); |
|
for(i = 0; i < n; ++i){ |
|
image im1 = load_image_color(paths[i*2], w, h); |
|
image im2 = load_image_color(paths[i*2+1], w, h); |
|
|
|
d.X.vals[i] = calloc(d.X.cols, sizeof(float)); |
|
memcpy(d.X.vals[i], im1.data, h*w*3*sizeof(float)); |
|
memcpy(d.X.vals[i] + h*w*3, im2.data, h*w*3*sizeof(float)); |
|
|
|
int id; |
|
float iou; |
|
|
|
char *imlabel1 = find_replace(paths[i*2], "imgs", "labels"); |
|
imlabel1 = find_replace(imlabel1, "jpg", "txt"); |
|
FILE *fp1 = fopen(imlabel1, "r"); |
|
|
|
while(fscanf(fp1, "%d %f", &id, &iou) == 2){ |
|
if (d.y.vals[i][2*id] < iou) d.y.vals[i][2*id] = iou; |
|
} |
|
|
|
char *imlabel2 = find_replace(paths[i*2+1], "imgs", "labels"); |
|
imlabel2 = find_replace(imlabel2, "jpg", "txt"); |
|
FILE *fp2 = fopen(imlabel2, "r"); |
|
|
|
while(fscanf(fp2, "%d %f", &id, &iou) == 2){ |
|
if (d.y.vals[i][2*id + 1] < iou) d.y.vals[i][2*id + 1] = iou; |
|
} |
|
|
|
for (j = 0; j < classes; ++j){ |
|
if (d.y.vals[i][2*j] > .5 && d.y.vals[i][2*j+1] < .5){ |
|
d.y.vals[i][2*j] = 1; |
|
d.y.vals[i][2*j+1] = 0; |
|
} else if (d.y.vals[i][2*j] < .5 && d.y.vals[i][2*j+1] > .5){ |
|
d.y.vals[i][2*j] = 0; |
|
d.y.vals[i][2*j+1] = 1; |
|
} else { |
|
d.y.vals[i][2*j] = SECRET_NUM; |
|
d.y.vals[i][2*j+1] = SECRET_NUM; |
|
} |
|
} |
|
fclose(fp1); |
|
fclose(fp2); |
|
|
|
free_image(im1); |
|
free_image(im2); |
|
} |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
data load_data_swag(char **paths, int n, int classes, float jitter) |
|
{ |
|
int index = rand()%n; |
|
char *random_path = paths[index]; |
|
|
|
image orig = load_image_color(random_path, 0, 0); |
|
int h = orig.h; |
|
int w = orig.w; |
|
|
|
data d = {0}; |
|
d.shallow = 0; |
|
d.w = w; |
|
d.h = h; |
|
|
|
d.X.rows = 1; |
|
d.X.vals = calloc(d.X.rows, sizeof(float*)); |
|
d.X.cols = h*w*3; |
|
|
|
int k = (4+classes)*30; |
|
d.y = make_matrix(1, k); |
|
|
|
int dw = w*jitter; |
|
int dh = h*jitter; |
|
|
|
int pleft = rand_uniform(-dw, dw); |
|
int pright = rand_uniform(-dw, dw); |
|
int ptop = rand_uniform(-dh, dh); |
|
int pbot = rand_uniform(-dh, dh); |
|
|
|
int swidth = w - pleft - pright; |
|
int sheight = h - ptop - pbot; |
|
|
|
float sx = (float)swidth / w; |
|
float sy = (float)sheight / h; |
|
|
|
int flip = rand()%2; |
|
image cropped = crop_image(orig, pleft, ptop, swidth, sheight); |
|
|
|
float dx = ((float)pleft/w)/sx; |
|
float dy = ((float)ptop /h)/sy; |
|
|
|
image sized = resize_image(cropped, w, h); |
|
if(flip) flip_image(sized); |
|
d.X.vals[0] = sized.data; |
|
|
|
fill_truth_swag(random_path, d.y.vals[0], classes, flip, dx, dy, 1./sx, 1./sy); |
|
|
|
free_image(orig); |
|
free_image(cropped); |
|
|
|
return d; |
|
} |
|
|
|
data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter, float hue, float saturation, float exposure) |
|
{ |
|
char **random_paths = get_random_paths(paths, n, m); |
|
int i; |
|
data d = {0}; |
|
d.shallow = 0; |
|
|
|
d.X.rows = n; |
|
d.X.vals = calloc(d.X.rows, sizeof(float*)); |
|
d.X.cols = h*w*3; |
|
|
|
d.y = make_matrix(n, 5*boxes); |
|
for(i = 0; i < n; ++i){ |
|
image orig = load_image_color(random_paths[i], 0, 0); |
|
|
|
int oh = orig.h; |
|
int ow = orig.w; |
|
|
|
int dw = (ow*jitter); |
|
int dh = (oh*jitter); |
|
|
|
int pleft = rand_uniform(-dw, dw); |
|
int pright = rand_uniform(-dw, dw); |
|
int ptop = rand_uniform(-dh, dh); |
|
int pbot = rand_uniform(-dh, dh); |
|
|
|
int swidth = ow - pleft - pright; |
|
int sheight = oh - ptop - pbot; |
|
|
|
float sx = (float)swidth / ow; |
|
float sy = (float)sheight / oh; |
|
|
|
int flip = rand()%2; |
|
image cropped = crop_image(orig, pleft, ptop, swidth, sheight); |
|
|
|
float dx = ((float)pleft/ow)/sx; |
|
float dy = ((float)ptop /oh)/sy; |
|
|
|
image sized = resize_image(cropped, w, h); |
|
if(flip) flip_image(sized); |
|
random_distort_image(sized, hue, saturation, exposure); |
|
d.X.vals[i] = sized.data; |
|
|
|
fill_truth_detection(random_paths[i], boxes, d.y.vals[i], classes, flip, dx, dy, 1./sx, 1./sy); |
|
|
|
free_image(orig); |
|
free_image(cropped); |
|
} |
|
free(random_paths); |
|
return d; |
|
} |
|
|
|
|
|
void *load_thread(void *ptr) |
|
{ |
|
//printf("Loading data: %d\n", rand()); |
|
load_args a = *(struct load_args*)ptr; |
|
if(a.exposure == 0) a.exposure = 1; |
|
if(a.saturation == 0) a.saturation = 1; |
|
if(a.aspect == 0) a.aspect = 1; |
|
|
|
if (a.type == OLD_CLASSIFICATION_DATA){ |
|
*a.d = load_data_old(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); |
|
} else if (a.type == CLASSIFICATION_DATA){ |
|
*a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure); |
|
} else if (a.type == SUPER_DATA){ |
|
*a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale); |
|
} else if (a.type == WRITING_DATA){ |
|
*a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h); |
|
} else if (a.type == REGION_DATA){ |
|
*a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure); |
|
} else if (a.type == DETECTION_DATA){ |
|
*a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure); |
|
} else if (a.type == SWAG_DATA){ |
|
*a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter); |
|
} else if (a.type == COMPARE_DATA){ |
|
*a.d = load_data_compare(a.n, a.paths, a.m, a.classes, a.w, a.h); |
|
} else if (a.type == IMAGE_DATA){ |
|
*(a.im) = load_image_color(a.path, 0, 0); |
|
*(a.resized) = resize_image(*(a.im), a.w, a.h); |
|
} else if (a.type == TAG_DATA){ |
|
*a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure); |
|
} |
|
free(ptr); |
|
return 0; |
|
} |
|
|
|
pthread_t load_data_in_thread(load_args args) |
|
{ |
|
pthread_t thread; |
|
struct load_args *ptr = calloc(1, sizeof(struct load_args)); |
|
*ptr = args; |
|
if(pthread_create(&thread, 0, load_thread, ptr)) error("Thread creation failed"); |
|
return thread; |
|
} |
|
|
|
void *load_threads(void *ptr) |
|
{ |
|
int i; |
|
load_args args = *(load_args *)ptr; |
|
data *out = args.d; |
|
int total = args.n; |
|
free(ptr); |
|
data *buffers = calloc(args.threads, sizeof(data)); |
|
pthread_t *threads = calloc(args.threads, sizeof(pthread_t)); |
|
for(i = 0; i < args.threads; ++i){ |
|
args.d = buffers + i; |
|
args.n = (i+1) * total/args.threads - i * total/args.threads; |
|
threads[i] = load_data_in_thread(args); |
|
} |
|
for(i = 0; i < args.threads; ++i){ |
|
pthread_join(threads[i], 0); |
|
} |
|
*out = concat_datas(buffers, args.threads); |
|
out->shallow = 0; |
|
for(i = 0; i < args.threads; ++i){ |
|
buffers[i].shallow = 1; |
|
free_data(buffers[i]); |
|
} |
|
free(buffers); |
|
free(threads); |
|
return 0; |
|
} |
|
|
|
pthread_t load_data(load_args args) |
|
{ |
|
pthread_t thread; |
|
struct load_args *ptr = calloc(1, sizeof(struct load_args)); |
|
*ptr = args; |
|
if(pthread_create(&thread, 0, load_threads, ptr)) error("Thread creation failed"); |
|
return thread; |
|
} |
|
|
|
data load_data_writing(char **paths, int n, int m, int w, int h, int out_w, int out_h) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png"); |
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = load_image_paths(paths, n, w, h); |
|
d.y = load_image_paths_gray(replace_paths, n, out_w, out_h); |
|
if(m) free(paths); |
|
int i; |
|
for(i = 0; i < n; ++i) free(replace_paths[i]); |
|
free(replace_paths); |
|
return d; |
|
} |
|
|
|
data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = load_image_paths(paths, n, w, h); |
|
d.y = load_labels_paths(paths, n, labels, k); |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
/* |
|
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) |
|
{ |
|
data d = {0}; |
|
d.indexes = calloc(n, sizeof(int)); |
|
if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes); |
|
d.shallow = 0; |
|
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure); |
|
d.y = load_labels_paths(paths, n, labels, k); |
|
if(m) free(paths); |
|
return d; |
|
} |
|
*/ |
|
|
|
data load_data_super(char **paths, int n, int m, int w, int h, int scale) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.shallow = 0; |
|
|
|
int i; |
|
d.X.rows = n; |
|
d.X.vals = calloc(n, sizeof(float*)); |
|
d.X.cols = w*h*3; |
|
|
|
d.y.rows = n; |
|
d.y.vals = calloc(n, sizeof(float*)); |
|
d.y.cols = w*scale * h*scale * 3; |
|
|
|
for(i = 0; i < n; ++i){ |
|
image im = load_image_color(paths[i], 0, 0); |
|
image crop = random_crop_image(im, w*scale, h*scale); |
|
int flip = rand()%2; |
|
if (flip) flip_image(crop); |
|
image resize = resize_image(crop, w, h); |
|
d.X.vals[i] = resize.data; |
|
d.y.vals[i] = crop.data; |
|
free_image(im); |
|
} |
|
|
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
data load_data_augment(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure); |
|
d.y = load_labels_paths(paths, n, labels, k); |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.w = size; |
|
d.h = size; |
|
d.shallow = 0; |
|
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure); |
|
d.y = load_tags_paths(paths, n, k); |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
matrix concat_matrix(matrix m1, matrix m2) |
|
{ |
|
int i, count = 0; |
|
matrix m; |
|
m.cols = m1.cols; |
|
m.rows = m1.rows+m2.rows; |
|
m.vals = calloc(m1.rows + m2.rows, sizeof(float*)); |
|
for(i = 0; i < m1.rows; ++i){ |
|
m.vals[count++] = m1.vals[i]; |
|
} |
|
for(i = 0; i < m2.rows; ++i){ |
|
m.vals[count++] = m2.vals[i]; |
|
} |
|
return m; |
|
} |
|
|
|
data concat_data(data d1, data d2) |
|
{ |
|
data d = {0}; |
|
d.shallow = 1; |
|
d.X = concat_matrix(d1.X, d2.X); |
|
d.y = concat_matrix(d1.y, d2.y); |
|
return d; |
|
} |
|
|
|
data concat_datas(data *d, int n) |
|
{ |
|
int i; |
|
data out = {0}; |
|
for(i = 0; i < n; ++i){ |
|
data new = concat_data(d[i], out); |
|
free_data(out); |
|
out = new; |
|
} |
|
return out; |
|
} |
|
|
|
data load_categorical_data_csv(char *filename, int target, int k) |
|
{ |
|
data d = {0}; |
|
d.shallow = 0; |
|
matrix X = csv_to_matrix(filename); |
|
float *truth_1d = pop_column(&X, target); |
|
float **truth = one_hot_encode(truth_1d, X.rows, k); |
|
matrix y; |
|
y.rows = X.rows; |
|
y.cols = k; |
|
y.vals = truth; |
|
d.X = X; |
|
d.y = y; |
|
free(truth_1d); |
|
return d; |
|
} |
|
|
|
data load_cifar10_data(char *filename) |
|
{ |
|
data d = {0}; |
|
d.shallow = 0; |
|
long i,j; |
|
matrix X = make_matrix(10000, 3072); |
|
matrix y = make_matrix(10000, 10); |
|
d.X = X; |
|
d.y = y; |
|
|
|
FILE *fp = fopen(filename, "rb"); |
|
if(!fp) file_error(filename); |
|
for(i = 0; i < 10000; ++i){ |
|
unsigned char bytes[3073]; |
|
fread(bytes, 1, 3073, fp); |
|
int class = bytes[0]; |
|
y.vals[i][class] = 1; |
|
for(j = 0; j < X.cols; ++j){ |
|
X.vals[i][j] = (double)bytes[j+1]; |
|
} |
|
} |
|
//translate_data_rows(d, -128); |
|
scale_data_rows(d, 1./255); |
|
//normalize_data_rows(d); |
|
fclose(fp); |
|
return d; |
|
} |
|
|
|
void get_random_batch(data d, int n, float *X, float *y) |
|
{ |
|
int j; |
|
for(j = 0; j < n; ++j){ |
|
int index = rand()%d.X.rows; |
|
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); |
|
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); |
|
} |
|
} |
|
|
|
void get_next_batch(data d, int n, int offset, float *X, float *y) |
|
{ |
|
int j; |
|
for(j = 0; j < n; ++j){ |
|
int index = offset + j; |
|
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); |
|
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); |
|
} |
|
} |
|
|
|
void smooth_data(data d) |
|
{ |
|
int i, j; |
|
float scale = 1. / d.y.cols; |
|
float eps = .1; |
|
for(i = 0; i < d.y.rows; ++i){ |
|
for(j = 0; j < d.y.cols; ++j){ |
|
d.y.vals[i][j] = eps * scale + (1-eps) * d.y.vals[i][j]; |
|
} |
|
} |
|
} |
|
|
|
data load_all_cifar10() |
|
{ |
|
data d = {0}; |
|
d.shallow = 0; |
|
int i,j,b; |
|
matrix X = make_matrix(50000, 3072); |
|
matrix y = make_matrix(50000, 10); |
|
d.X = X; |
|
d.y = y; |
|
|
|
|
|
for(b = 0; b < 5; ++b){ |
|
char buff[256]; |
|
sprintf(buff, "data/cifar/cifar-10-batches-bin/data_batch_%d.bin", b+1); |
|
FILE *fp = fopen(buff, "rb"); |
|
if(!fp) file_error(buff); |
|
for(i = 0; i < 10000; ++i){ |
|
unsigned char bytes[3073]; |
|
fread(bytes, 1, 3073, fp); |
|
int class = bytes[0]; |
|
y.vals[i+b*10000][class] = 1; |
|
for(j = 0; j < X.cols; ++j){ |
|
X.vals[i+b*10000][j] = (double)bytes[j+1]; |
|
} |
|
} |
|
fclose(fp); |
|
} |
|
//normalize_data_rows(d); |
|
//translate_data_rows(d, -128); |
|
scale_data_rows(d, 1./255); |
|
smooth_data(d); |
|
return d; |
|
} |
|
|
|
data load_go(char *filename) |
|
{ |
|
FILE *fp = fopen(filename, "rb"); |
|
matrix X = make_matrix(3363059, 361); |
|
matrix y = make_matrix(3363059, 361); |
|
int row, col; |
|
|
|
if(!fp) file_error(filename); |
|
char *label; |
|
int count = 0; |
|
while((label = fgetl(fp))){ |
|
int i; |
|
if(count == X.rows){ |
|
X = resize_matrix(X, count*2); |
|
y = resize_matrix(y, count*2); |
|
} |
|
sscanf(label, "%d %d", &row, &col); |
|
char *board = fgetl(fp); |
|
|
|
int index = row*19 + col; |
|
y.vals[count][index] = 1; |
|
|
|
for(i = 0; i < 19*19; ++i){ |
|
float val = 0; |
|
if(board[i] == '1') val = 1; |
|
else if(board[i] == '2') val = -1; |
|
X.vals[count][i] = val; |
|
} |
|
++count; |
|
free(label); |
|
free(board); |
|
} |
|
X = resize_matrix(X, count); |
|
y = resize_matrix(y, count); |
|
|
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = X; |
|
d.y = y; |
|
|
|
|
|
fclose(fp); |
|
|
|
return d; |
|
} |
|
|
|
|
|
void randomize_data(data d) |
|
{ |
|
int i; |
|
for(i = d.X.rows-1; i > 0; --i){ |
|
int index = rand()%i; |
|
float *swap = d.X.vals[index]; |
|
d.X.vals[index] = d.X.vals[i]; |
|
d.X.vals[i] = swap; |
|
|
|
swap = d.y.vals[index]; |
|
d.y.vals[index] = d.y.vals[i]; |
|
d.y.vals[i] = swap; |
|
} |
|
} |
|
|
|
void scale_data_rows(data d, float s) |
|
{ |
|
int i; |
|
for(i = 0; i < d.X.rows; ++i){ |
|
scale_array(d.X.vals[i], d.X.cols, s); |
|
} |
|
} |
|
|
|
void translate_data_rows(data d, float s) |
|
{ |
|
int i; |
|
for(i = 0; i < d.X.rows; ++i){ |
|
translate_array(d.X.vals[i], d.X.cols, s); |
|
} |
|
} |
|
|
|
void normalize_data_rows(data d) |
|
{ |
|
int i; |
|
for(i = 0; i < d.X.rows; ++i){ |
|
normalize_array(d.X.vals[i], d.X.cols); |
|
} |
|
} |
|
|
|
data get_data_part(data d, int part, int total) |
|
{ |
|
data p = {0}; |
|
p.shallow = 1; |
|
p.X.rows = d.X.rows * (part + 1) / total - d.X.rows * part / total; |
|
p.y.rows = d.y.rows * (part + 1) / total - d.y.rows * part / total; |
|
p.X.cols = d.X.cols; |
|
p.y.cols = d.y.cols; |
|
p.X.vals = d.X.vals + d.X.rows * part / total; |
|
p.y.vals = d.y.vals + d.y.rows * part / total; |
|
return p; |
|
} |
|
|
|
data get_random_data(data d, int num) |
|
{ |
|
data r = {0}; |
|
r.shallow = 1; |
|
|
|
r.X.rows = num; |
|
r.y.rows = num; |
|
|
|
r.X.cols = d.X.cols; |
|
r.y.cols = d.y.cols; |
|
|
|
r.X.vals = calloc(num, sizeof(float *)); |
|
r.y.vals = calloc(num, sizeof(float *)); |
|
|
|
int i; |
|
for(i = 0; i < num; ++i){ |
|
int index = rand()%d.X.rows; |
|
r.X.vals[i] = d.X.vals[index]; |
|
r.y.vals[i] = d.y.vals[index]; |
|
} |
|
return r; |
|
} |
|
|
|
data *split_data(data d, int part, int total) |
|
{ |
|
data *split = calloc(2, sizeof(data)); |
|
int i; |
|
int start = part*d.X.rows/total; |
|
int end = (part+1)*d.X.rows/total; |
|
data train; |
|
data test; |
|
train.shallow = test.shallow = 1; |
|
|
|
test.X.rows = test.y.rows = end-start; |
|
train.X.rows = train.y.rows = d.X.rows - (end-start); |
|
train.X.cols = test.X.cols = d.X.cols; |
|
train.y.cols = test.y.cols = d.y.cols; |
|
|
|
train.X.vals = calloc(train.X.rows, sizeof(float*)); |
|
test.X.vals = calloc(test.X.rows, sizeof(float*)); |
|
train.y.vals = calloc(train.y.rows, sizeof(float*)); |
|
test.y.vals = calloc(test.y.rows, sizeof(float*)); |
|
|
|
for(i = 0; i < start; ++i){ |
|
train.X.vals[i] = d.X.vals[i]; |
|
train.y.vals[i] = d.y.vals[i]; |
|
} |
|
for(i = start; i < end; ++i){ |
|
test.X.vals[i-start] = d.X.vals[i]; |
|
test.y.vals[i-start] = d.y.vals[i]; |
|
} |
|
for(i = end; i < d.X.rows; ++i){ |
|
train.X.vals[i-(end-start)] = d.X.vals[i]; |
|
train.y.vals[i-(end-start)] = d.y.vals[i]; |
|
} |
|
split[0] = train; |
|
split[1] = test; |
|
return split; |
|
} |
|
|
|
|