You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

134 lines
4.1 KiB

#include "connected_layer.h"
#include "utils.h"
#include "mini_blas.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation)
{
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
int i;
connected_layer *layer = calloc(1, sizeof(connected_layer));
layer->inputs = inputs;
layer->outputs = outputs;
layer->output = calloc(outputs, sizeof(double*));
layer->delta = calloc(outputs, sizeof(double*));
layer->weight_updates = calloc(inputs*outputs, sizeof(double));
layer->weight_momentum = calloc(inputs*outputs, sizeof(double));
layer->weights = calloc(inputs*outputs, sizeof(double));
double scale = 2./inputs;
for(i = 0; i < inputs*outputs; ++i)
layer->weights[i] = rand_normal()*scale;
layer->bias_updates = calloc(outputs, sizeof(double));
layer->bias_momentum = calloc(outputs, sizeof(double));
layer->biases = calloc(outputs, sizeof(double));
for(i = 0; i < outputs; ++i)
//layer->biases[i] = rand_normal()*scale + scale;
layer->biases[i] = 0;
layer->activation = activation;
return layer;
}
void update_connected_layer(connected_layer layer, double step, double momentum, double decay)
{
int i;
for(i = 0; i < layer.outputs; ++i){
layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
layer.biases[i] += layer.bias_momentum[i];
}
for(i = 0; i < layer.outputs*layer.inputs; ++i){
layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
layer.weights[i] += layer.weight_momentum[i];
}
memset(layer.bias_updates, 0, layer.outputs*sizeof(double));
memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double));
}
void forward_connected_layer(connected_layer layer, double *input)
{
int i;
memcpy(layer.output, layer.biases, layer.outputs*sizeof(double));
int m = 1;
int k = layer.inputs;
int n = layer.outputs;
double *a = input;
double *b = layer.weights;
double *c = layer.output;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
for(i = 0; i < layer.outputs; ++i){
layer.output[i] = activate(layer.output[i], layer.activation);
}
}
void learn_connected_layer(connected_layer layer, double *input)
{
int i;
for(i = 0; i < layer.outputs; ++i){
layer.delta[i] *= gradient(layer.output[i], layer.activation);
layer.bias_updates[i] += layer.delta[i];
}
int m = layer.inputs;
int k = 1;
int n = layer.outputs;
double *a = input;
double *b = layer.delta;
double *c = layer.weight_updates;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
void backward_connected_layer(connected_layer layer, double *input, double *delta)
{
memset(delta, 0, layer.inputs*sizeof(double));
int m = layer.inputs;
int k = layer.outputs;
int n = 1;
double *a = layer.weights;
double *b = layer.delta;
double *c = delta;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
/*
void forward_connected_layer(connected_layer layer, double *input)
{
int i, j;
for(i = 0; i < layer.outputs; ++i){
layer.output[i] = layer.biases[i];
for(j = 0; j < layer.inputs; ++j){
layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
}
layer.output[i] = activate(layer.output[i], layer.activation);
}
}
void learn_connected_layer(connected_layer layer, double *input)
{
int i, j;
for(i = 0; i < layer.outputs; ++i){
layer.delta[i] *= gradient(layer.output[i], layer.activation);
layer.bias_updates[i] += layer.delta[i];
for(j = 0; j < layer.inputs; ++j){
layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
}
}
}
void backward_connected_layer(connected_layer layer, double *input, double *delta)
{
int i, j;
for(j = 0; j < layer.inputs; ++j){
delta[j] = 0;
for(i = 0; i < layer.outputs; ++i){
delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
}
}
}
*/