mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
388 lines
14 KiB
388 lines
14 KiB
#include <stdio.h> |
|
|
|
#include "network.h" |
|
#include "detection_layer.h" |
|
#include "cost_layer.h" |
|
#include "utils.h" |
|
#include "parser.h" |
|
#include "box.h" |
|
#include "demo.h" |
|
|
|
#ifdef OPENCV |
|
#include "opencv2/highgui/highgui_c.h" |
|
#endif |
|
|
|
void convert_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness); |
|
|
|
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"}; |
|
|
|
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
|
|
|
image coco_labels[80]; |
|
|
|
void train_coco(char *cfgfile, char *weightfile) |
|
{ |
|
//char *train_images = "/home/pjreddie/data/voc/test/train.txt"; |
|
//char *train_images = "/home/pjreddie/data/coco/train.txt"; |
|
char *train_images = "data/coco.trainval.txt"; |
|
char *backup_directory = "/home/pjreddie/backup/"; |
|
srand(time(0)); |
|
data_seed = time(0); |
|
char *base = basecfg(cfgfile); |
|
printf("%s\n", base); |
|
float avg_loss = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
int imgs = net.batch*net.subdivisions; |
|
int i = *net.seen/imgs; |
|
data train, buffer; |
|
|
|
|
|
layer l = net.layers[net.n - 1]; |
|
|
|
int side = l.side; |
|
int classes = l.classes; |
|
float jitter = l.jitter; |
|
|
|
list *plist = get_paths(train_images); |
|
//int N = plist->size; |
|
char **paths = (char **)list_to_array(plist); |
|
|
|
load_args args = {0}; |
|
args.w = net.w; |
|
args.h = net.h; |
|
args.paths = paths; |
|
args.n = imgs; |
|
args.m = plist->size; |
|
args.classes = classes; |
|
args.jitter = jitter; |
|
args.num_boxes = side; |
|
args.d = &buffer; |
|
args.type = REGION_DATA; |
|
|
|
pthread_t load_thread = load_data_in_thread(args); |
|
clock_t time; |
|
//while(i*imgs < N*120){ |
|
while(get_current_batch(net) < net.max_batches){ |
|
i += 1; |
|
time=clock(); |
|
pthread_join(load_thread, 0); |
|
train = buffer; |
|
load_thread = load_data_in_thread(args); |
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
|
|
/* |
|
image im = float_to_image(net.w, net.h, 3, train.X.vals[113]); |
|
image copy = copy_image(im); |
|
draw_coco(copy, train.y.vals[113], 7, "truth"); |
|
cvWaitKey(0); |
|
free_image(copy); |
|
*/ |
|
|
|
time=clock(); |
|
float loss = train_network(net, train); |
|
if (avg_loss < 0) avg_loss = loss; |
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
|
if(i%1000==0 || (i < 1000 && i%100 == 0)){ |
|
char buff[256]; |
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
|
save_weights(net, buff); |
|
} |
|
free_data(train); |
|
} |
|
char buff[256]; |
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
|
save_weights(net, buff); |
|
} |
|
|
|
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
|
{ |
|
int i, j; |
|
for(i = 0; i < num_boxes; ++i){ |
|
float xmin = boxes[i].x - boxes[i].w/2.; |
|
float xmax = boxes[i].x + boxes[i].w/2.; |
|
float ymin = boxes[i].y - boxes[i].h/2.; |
|
float ymax = boxes[i].y + boxes[i].h/2.; |
|
|
|
if (xmin < 0) xmin = 0; |
|
if (ymin < 0) ymin = 0; |
|
if (xmax > w) xmax = w; |
|
if (ymax > h) ymax = h; |
|
|
|
float bx = xmin; |
|
float by = ymin; |
|
float bw = xmax - xmin; |
|
float bh = ymax - ymin; |
|
|
|
for(j = 0; j < classes; ++j){ |
|
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]); |
|
} |
|
} |
|
} |
|
|
|
int get_coco_image_id(char *filename) |
|
{ |
|
char *p = strrchr(filename, '_'); |
|
return atoi(p+1); |
|
} |
|
|
|
void validate_coco(char *cfgfile, char *weightfile) |
|
{ |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
set_batch_network(&net, 1); |
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
srand(time(0)); |
|
|
|
char *base = "results/"; |
|
list *plist = get_paths("data/coco_val_5k.list"); |
|
//list *plist = get_paths("/home/pjreddie/data/people-art/test.txt"); |
|
//list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); |
|
char **paths = (char **)list_to_array(plist); |
|
|
|
layer l = net.layers[net.n-1]; |
|
int classes = l.classes; |
|
int square = l.sqrt; |
|
int side = l.side; |
|
|
|
int j; |
|
char buff[1024]; |
|
snprintf(buff, 1024, "%s/coco_results.json", base); |
|
FILE *fp = fopen(buff, "w"); |
|
fprintf(fp, "[\n"); |
|
|
|
box *boxes = calloc(side*side*l.n, sizeof(box)); |
|
float **probs = calloc(side*side*l.n, sizeof(float *)); |
|
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
|
|
|
int m = plist->size; |
|
int i=0; |
|
int t; |
|
|
|
float thresh = .01; |
|
int nms = 1; |
|
float iou_thresh = .5; |
|
|
|
int nthreads = 8; |
|
image *val = calloc(nthreads, sizeof(image)); |
|
image *val_resized = calloc(nthreads, sizeof(image)); |
|
image *buf = calloc(nthreads, sizeof(image)); |
|
image *buf_resized = calloc(nthreads, sizeof(image)); |
|
pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); |
|
|
|
load_args args = {0}; |
|
args.w = net.w; |
|
args.h = net.h; |
|
args.type = IMAGE_DATA; |
|
|
|
for(t = 0; t < nthreads; ++t){ |
|
args.path = paths[i+t]; |
|
args.im = &buf[t]; |
|
args.resized = &buf_resized[t]; |
|
thr[t] = load_data_in_thread(args); |
|
} |
|
time_t start = time(0); |
|
for(i = nthreads; i < m+nthreads; i += nthreads){ |
|
fprintf(stderr, "%d\n", i); |
|
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ |
|
pthread_join(thr[t], 0); |
|
val[t] = buf[t]; |
|
val_resized[t] = buf_resized[t]; |
|
} |
|
for(t = 0; t < nthreads && i+t < m; ++t){ |
|
args.path = paths[i+t]; |
|
args.im = &buf[t]; |
|
args.resized = &buf_resized[t]; |
|
thr[t] = load_data_in_thread(args); |
|
} |
|
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ |
|
char *path = paths[i+t-nthreads]; |
|
int image_id = get_coco_image_id(path); |
|
float *X = val_resized[t].data; |
|
float *predictions = network_predict(net, X); |
|
int w = val[t].w; |
|
int h = val[t].h; |
|
convert_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0); |
|
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh); |
|
print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h); |
|
free_image(val[t]); |
|
free_image(val_resized[t]); |
|
} |
|
} |
|
fseek(fp, -2, SEEK_CUR); |
|
fprintf(fp, "\n]\n"); |
|
fclose(fp); |
|
|
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
|
} |
|
|
|
void validate_coco_recall(char *cfgfile, char *weightfile) |
|
{ |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
set_batch_network(&net, 1); |
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
srand(time(0)); |
|
|
|
char *base = "results/comp4_det_test_"; |
|
list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); |
|
char **paths = (char **)list_to_array(plist); |
|
|
|
layer l = net.layers[net.n-1]; |
|
int classes = l.classes; |
|
int square = l.sqrt; |
|
int side = l.side; |
|
|
|
int j, k; |
|
FILE **fps = calloc(classes, sizeof(FILE *)); |
|
for(j = 0; j < classes; ++j){ |
|
char buff[1024]; |
|
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]); |
|
fps[j] = fopen(buff, "w"); |
|
} |
|
box *boxes = calloc(side*side*l.n, sizeof(box)); |
|
float **probs = calloc(side*side*l.n, sizeof(float *)); |
|
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *)); |
|
|
|
int m = plist->size; |
|
int i=0; |
|
|
|
float thresh = .001; |
|
int nms = 0; |
|
float iou_thresh = .5; |
|
float nms_thresh = .5; |
|
|
|
int total = 0; |
|
int correct = 0; |
|
int proposals = 0; |
|
float avg_iou = 0; |
|
|
|
for(i = 0; i < m; ++i){ |
|
char *path = paths[i]; |
|
image orig = load_image_color(path, 0, 0); |
|
image sized = resize_image(orig, net.w, net.h); |
|
char *id = basecfg(path); |
|
float *predictions = network_predict(net, sized.data); |
|
convert_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1); |
|
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh); |
|
|
|
char *labelpath = find_replace(path, "images", "labels"); |
|
labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
|
labelpath = find_replace(labelpath, ".jpg", ".txt"); |
|
labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
|
|
|
int num_labels = 0; |
|
box_label *truth = read_boxes(labelpath, &num_labels); |
|
for(k = 0; k < side*side*l.n; ++k){ |
|
if(probs[k][0] > thresh){ |
|
++proposals; |
|
} |
|
} |
|
for (j = 0; j < num_labels; ++j) { |
|
++total; |
|
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; |
|
float best_iou = 0; |
|
for(k = 0; k < side*side*l.n; ++k){ |
|
float iou = box_iou(boxes[k], t); |
|
if(probs[k][0] > thresh && iou > best_iou){ |
|
best_iou = iou; |
|
} |
|
} |
|
avg_iou += best_iou; |
|
if(best_iou > iou_thresh){ |
|
++correct; |
|
} |
|
} |
|
|
|
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); |
|
free(id); |
|
free_image(orig); |
|
free_image(sized); |
|
} |
|
} |
|
|
|
void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh) |
|
{ |
|
|
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
detection_layer l = net.layers[net.n-1]; |
|
set_batch_network(&net, 1); |
|
srand(2222222); |
|
float nms = .4; |
|
clock_t time; |
|
char buff[256]; |
|
char *input = buff; |
|
int j; |
|
box *boxes = calloc(l.side*l.side*l.n, sizeof(box)); |
|
float **probs = calloc(l.side*l.side*l.n, sizeof(float *)); |
|
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); |
|
while(1){ |
|
if(filename){ |
|
strncpy(input, filename, 256); |
|
} else { |
|
printf("Enter Image Path: "); |
|
fflush(stdout); |
|
input = fgets(input, 256, stdin); |
|
if(!input) return; |
|
strtok(input, "\n"); |
|
} |
|
image im = load_image_color(input,0,0); |
|
image sized = resize_image(im, net.w, net.h); |
|
float *X = sized.data; |
|
time=clock(); |
|
float *predictions = network_predict(net, X); |
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
|
convert_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0); |
|
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms); |
|
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, coco_labels, 80); |
|
save_image(im, "prediction"); |
|
show_image(im, "predictions"); |
|
free_image(im); |
|
free_image(sized); |
|
#ifdef OPENCV |
|
cvWaitKey(0); |
|
cvDestroyAllWindows(); |
|
#endif |
|
if (filename) break; |
|
} |
|
} |
|
|
|
void run_coco(int argc, char **argv) |
|
{ |
|
int i; |
|
for(i = 0; i < 80; ++i){ |
|
char buff[256]; |
|
sprintf(buff, "data/labels/%s.png", coco_classes[i]); |
|
coco_labels[i] = load_image_color(buff, 0, 0); |
|
} |
|
float thresh = find_float_arg(argc, argv, "-thresh", .2); |
|
int cam_index = find_int_arg(argc, argv, "-c", 0); |
|
int frame_skip = find_int_arg(argc, argv, "-s", 0); |
|
|
|
if(argc < 4){ |
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
|
return; |
|
} |
|
|
|
char *cfg = argv[3]; |
|
char *weights = (argc > 4) ? argv[4] : 0; |
|
char *filename = (argc > 5) ? argv[5]: 0; |
|
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh); |
|
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights); |
|
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights); |
|
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights); |
|
else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, coco_labels, 80, frame_skip); |
|
}
|
|
|