mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
7.9 KiB
238 lines
7.9 KiB
#include "cuda_runtime.h" |
|
#include "curand.h" |
|
#include "cublas_v2.h" |
|
|
|
extern "C" { |
|
#include <stdio.h> |
|
#include <time.h> |
|
#include <assert.h> |
|
|
|
#include "network.h" |
|
#include "image.h" |
|
#include "data.h" |
|
#include "utils.h" |
|
#include "parser.h" |
|
|
|
#include "crop_layer.h" |
|
#include "connected_layer.h" |
|
#include "rnn_layer.h" |
|
#include "gru_layer.h" |
|
#include "crnn_layer.h" |
|
#include "detection_layer.h" |
|
#include "region_layer.h" |
|
#include "convolutional_layer.h" |
|
#include "activation_layer.h" |
|
#include "deconvolutional_layer.h" |
|
#include "maxpool_layer.h" |
|
#include "avgpool_layer.h" |
|
#include "normalization_layer.h" |
|
#include "batchnorm_layer.h" |
|
#include "cost_layer.h" |
|
#include "local_layer.h" |
|
#include "softmax_layer.h" |
|
#include "dropout_layer.h" |
|
#include "route_layer.h" |
|
#include "shortcut_layer.h" |
|
#include "blas.h" |
|
} |
|
|
|
float * get_network_output_gpu_layer(network net, int i); |
|
float * get_network_delta_gpu_layer(network net, int i); |
|
float * get_network_output_gpu(network net); |
|
|
|
void forward_network_gpu(network net, network_state state) |
|
{ |
|
state.workspace = net.workspace; |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
state.index = i; |
|
layer l = net.layers[i]; |
|
if(l.delta_gpu){ |
|
fill_ongpu(l.outputs * l.batch, 0, l.delta_gpu, 1); |
|
} |
|
if(l.type == CONVOLUTIONAL){ |
|
forward_convolutional_layer_gpu(l, state); |
|
} else if(l.type == DECONVOLUTIONAL){ |
|
forward_deconvolutional_layer_gpu(l, state); |
|
} else if(l.type == ACTIVE){ |
|
forward_activation_layer_gpu(l, state); |
|
} else if(l.type == LOCAL){ |
|
forward_local_layer_gpu(l, state); |
|
} else if(l.type == DETECTION){ |
|
forward_detection_layer_gpu(l, state); |
|
} else if(l.type == REGION){ |
|
forward_region_layer_gpu(l, state); |
|
} else if(l.type == CONNECTED){ |
|
forward_connected_layer_gpu(l, state); |
|
} else if(l.type == RNN){ |
|
forward_rnn_layer_gpu(l, state); |
|
} else if(l.type == GRU){ |
|
forward_gru_layer_gpu(l, state); |
|
} else if(l.type == CRNN){ |
|
forward_crnn_layer_gpu(l, state); |
|
} else if(l.type == CROP){ |
|
forward_crop_layer_gpu(l, state); |
|
} else if(l.type == COST){ |
|
forward_cost_layer_gpu(l, state); |
|
} else if(l.type == SOFTMAX){ |
|
forward_softmax_layer_gpu(l, state); |
|
} else if(l.type == NORMALIZATION){ |
|
forward_normalization_layer_gpu(l, state); |
|
} else if(l.type == BATCHNORM){ |
|
forward_batchnorm_layer_gpu(l, state); |
|
} else if(l.type == MAXPOOL){ |
|
forward_maxpool_layer_gpu(l, state); |
|
} else if(l.type == AVGPOOL){ |
|
forward_avgpool_layer_gpu(l, state); |
|
} else if(l.type == DROPOUT){ |
|
forward_dropout_layer_gpu(l, state); |
|
} else if(l.type == ROUTE){ |
|
forward_route_layer_gpu(l, net); |
|
} else if(l.type == SHORTCUT){ |
|
forward_shortcut_layer_gpu(l, state); |
|
} |
|
state.input = l.output_gpu; |
|
} |
|
} |
|
|
|
void backward_network_gpu(network net, network_state state) |
|
{ |
|
state.workspace = net.workspace; |
|
int i; |
|
float * original_input = state.input; |
|
float * original_delta = state.delta; |
|
for(i = net.n-1; i >= 0; --i){ |
|
state.index = i; |
|
layer l = net.layers[i]; |
|
if(i == 0){ |
|
state.input = original_input; |
|
state.delta = original_delta; |
|
}else{ |
|
layer prev = net.layers[i-1]; |
|
state.input = prev.output_gpu; |
|
state.delta = prev.delta_gpu; |
|
} |
|
if(l.type == CONVOLUTIONAL){ |
|
backward_convolutional_layer_gpu(l, state); |
|
} else if(l.type == DECONVOLUTIONAL){ |
|
backward_deconvolutional_layer_gpu(l, state); |
|
} else if(l.type == ACTIVE){ |
|
backward_activation_layer_gpu(l, state); |
|
} else if(l.type == LOCAL){ |
|
backward_local_layer_gpu(l, state); |
|
} else if(l.type == MAXPOOL){ |
|
if(i != 0) backward_maxpool_layer_gpu(l, state); |
|
} else if(l.type == AVGPOOL){ |
|
if(i != 0) backward_avgpool_layer_gpu(l, state); |
|
} else if(l.type == DROPOUT){ |
|
backward_dropout_layer_gpu(l, state); |
|
} else if(l.type == DETECTION){ |
|
backward_detection_layer_gpu(l, state); |
|
} else if(l.type == REGION){ |
|
backward_region_layer_gpu(l, state); |
|
} else if(l.type == NORMALIZATION){ |
|
backward_normalization_layer_gpu(l, state); |
|
} else if(l.type == BATCHNORM){ |
|
backward_batchnorm_layer_gpu(l, state); |
|
} else if(l.type == SOFTMAX){ |
|
if(i != 0) backward_softmax_layer_gpu(l, state); |
|
} else if(l.type == CONNECTED){ |
|
backward_connected_layer_gpu(l, state); |
|
} else if(l.type == RNN){ |
|
backward_rnn_layer_gpu(l, state); |
|
} else if(l.type == GRU){ |
|
backward_gru_layer_gpu(l, state); |
|
} else if(l.type == CRNN){ |
|
backward_crnn_layer_gpu(l, state); |
|
} else if(l.type == COST){ |
|
backward_cost_layer_gpu(l, state); |
|
} else if(l.type == ROUTE){ |
|
backward_route_layer_gpu(l, net); |
|
} else if(l.type == SHORTCUT){ |
|
backward_shortcut_layer_gpu(l, state); |
|
} |
|
} |
|
} |
|
|
|
void update_network_gpu(network net) |
|
{ |
|
int i; |
|
int update_batch = net.batch*net.subdivisions; |
|
float rate = get_current_rate(net); |
|
for(i = 0; i < net.n; ++i){ |
|
layer l = net.layers[i]; |
|
if(l.type == CONVOLUTIONAL){ |
|
update_convolutional_layer_gpu(l, update_batch, rate, net.momentum, net.decay); |
|
} else if(l.type == DECONVOLUTIONAL){ |
|
update_deconvolutional_layer_gpu(l, rate, net.momentum, net.decay); |
|
} else if(l.type == CONNECTED){ |
|
update_connected_layer_gpu(l, update_batch, rate, net.momentum, net.decay); |
|
} else if(l.type == GRU){ |
|
update_gru_layer_gpu(l, update_batch, rate, net.momentum, net.decay); |
|
} else if(l.type == RNN){ |
|
update_rnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay); |
|
} else if(l.type == CRNN){ |
|
update_crnn_layer_gpu(l, update_batch, rate, net.momentum, net.decay); |
|
} else if(l.type == LOCAL){ |
|
update_local_layer_gpu(l, update_batch, rate, net.momentum, net.decay); |
|
} |
|
} |
|
} |
|
|
|
float train_network_datum_gpu(network net, float *x, float *y) |
|
{ |
|
network_state state; |
|
state.index = 0; |
|
state.net = net; |
|
int x_size = get_network_input_size(net)*net.batch; |
|
int y_size = get_network_output_size(net)*net.batch; |
|
if(net.layers[net.n-1].truths) y_size = net.layers[net.n-1].truths*net.batch; |
|
if(!*net.input_gpu){ |
|
*net.input_gpu = cuda_make_array(x, x_size); |
|
*net.truth_gpu = cuda_make_array(y, y_size); |
|
}else{ |
|
cuda_push_array(*net.input_gpu, x, x_size); |
|
cuda_push_array(*net.truth_gpu, y, y_size); |
|
} |
|
state.input = *net.input_gpu; |
|
state.delta = 0; |
|
state.truth = *net.truth_gpu; |
|
state.train = 1; |
|
forward_network_gpu(net, state); |
|
backward_network_gpu(net, state); |
|
float error = get_network_cost(net); |
|
if (((*net.seen) / net.batch) % net.subdivisions == 0) update_network_gpu(net); |
|
|
|
return error; |
|
} |
|
|
|
float *get_network_output_layer_gpu(network net, int i) |
|
{ |
|
layer l = net.layers[i]; |
|
cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch); |
|
return l.output; |
|
} |
|
|
|
float *get_network_output_gpu(network net) |
|
{ |
|
int i; |
|
for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
|
return get_network_output_layer_gpu(net, i); |
|
} |
|
|
|
float *network_predict_gpu(network net, float *input) |
|
{ |
|
int size = get_network_input_size(net) * net.batch; |
|
network_state state; |
|
state.index = 0; |
|
state.net = net; |
|
state.input = cuda_make_array(input, size); |
|
state.truth = 0; |
|
state.train = 0; |
|
state.delta = 0; |
|
forward_network_gpu(net, state); |
|
float *out = get_network_output_gpu(net); |
|
cuda_free(state.input); |
|
return out; |
|
} |
|
|
|
|