mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
425 lines
16 KiB
425 lines
16 KiB
#include "batchnorm_layer.h" |
|
#include "blas.h" |
|
#include "utils.h" |
|
#include <stdio.h> |
|
|
|
layer make_batchnorm_layer(int batch, int w, int h, int c, int train) |
|
{ |
|
fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c); |
|
layer layer = { (LAYER_TYPE)0 }; |
|
layer.type = BATCHNORM; |
|
layer.batch = batch; |
|
layer.train = train; |
|
layer.h = layer.out_h = h; |
|
layer.w = layer.out_w = w; |
|
layer.c = layer.out_c = c; |
|
|
|
layer.n = layer.c; |
|
layer.output = (float*)xcalloc(h * w * c * batch, sizeof(float)); |
|
layer.delta = (float*)xcalloc(h * w * c * batch, sizeof(float)); |
|
layer.inputs = w*h*c; |
|
layer.outputs = layer.inputs; |
|
|
|
layer.biases = (float*)xcalloc(c, sizeof(float)); |
|
layer.bias_updates = (float*)xcalloc(c, sizeof(float)); |
|
|
|
layer.scales = (float*)xcalloc(c, sizeof(float)); |
|
layer.scale_updates = (float*)xcalloc(c, sizeof(float)); |
|
int i; |
|
for(i = 0; i < c; ++i){ |
|
layer.scales[i] = 1; |
|
} |
|
|
|
layer.mean = (float*)xcalloc(c, sizeof(float)); |
|
layer.variance = (float*)xcalloc(c, sizeof(float)); |
|
|
|
layer.rolling_mean = (float*)xcalloc(c, sizeof(float)); |
|
layer.rolling_variance = (float*)xcalloc(c, sizeof(float)); |
|
|
|
layer.forward = forward_batchnorm_layer; |
|
layer.backward = backward_batchnorm_layer; |
|
layer.update = update_batchnorm_layer; |
|
#ifdef GPU |
|
layer.forward_gpu = forward_batchnorm_layer_gpu; |
|
layer.backward_gpu = backward_batchnorm_layer_gpu; |
|
layer.update_gpu = update_batchnorm_layer_gpu; |
|
|
|
layer.output_gpu = cuda_make_array(layer.output, h * w * c * batch); |
|
|
|
layer.biases_gpu = cuda_make_array(layer.biases, c); |
|
layer.scales_gpu = cuda_make_array(layer.scales, c); |
|
|
|
if (train) { |
|
layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch); |
|
|
|
layer.bias_updates_gpu = cuda_make_array(layer.bias_updates, c); |
|
layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c); |
|
|
|
layer.mean_delta_gpu = cuda_make_array(layer.mean, c); |
|
layer.variance_delta_gpu = cuda_make_array(layer.variance, c); |
|
} |
|
|
|
layer.mean_gpu = cuda_make_array(layer.mean, c); |
|
layer.variance_gpu = cuda_make_array(layer.variance, c); |
|
|
|
layer.rolling_mean_gpu = cuda_make_array(layer.mean, c); |
|
layer.rolling_variance_gpu = cuda_make_array(layer.variance, c); |
|
|
|
if (train) { |
|
layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs); |
|
#ifndef CUDNN |
|
layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs); |
|
#endif // not CUDNN |
|
} |
|
|
|
#ifdef CUDNN |
|
CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normTensorDesc)); |
|
CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normDstTensorDesc)); |
|
CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w)); |
|
CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1)); |
|
#endif |
|
#endif |
|
return layer; |
|
} |
|
|
|
void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) |
|
{ |
|
int i,b,f; |
|
for(f = 0; f < n; ++f){ |
|
float sum = 0; |
|
for(b = 0; b < batch; ++b){ |
|
for(i = 0; i < size; ++i){ |
|
int index = i + size*(f + n*b); |
|
sum += delta[index] * x_norm[index]; |
|
} |
|
} |
|
scale_updates[f] += sum; |
|
} |
|
} |
|
|
|
void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) |
|
{ |
|
|
|
int i,j,k; |
|
for(i = 0; i < filters; ++i){ |
|
mean_delta[i] = 0; |
|
for (j = 0; j < batch; ++j) { |
|
for (k = 0; k < spatial; ++k) { |
|
int index = j*filters*spatial + i*spatial + k; |
|
mean_delta[i] += delta[index]; |
|
} |
|
} |
|
mean_delta[i] *= (-1./sqrt(variance[i] + .00001f)); |
|
} |
|
} |
|
void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) |
|
{ |
|
|
|
int i,j,k; |
|
for(i = 0; i < filters; ++i){ |
|
variance_delta[i] = 0; |
|
for(j = 0; j < batch; ++j){ |
|
for(k = 0; k < spatial; ++k){ |
|
int index = j*filters*spatial + i*spatial + k; |
|
variance_delta[i] += delta[index]*(x[index] - mean[i]); |
|
} |
|
} |
|
variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.)); |
|
} |
|
} |
|
void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) |
|
{ |
|
int f, j, k; |
|
for(j = 0; j < batch; ++j){ |
|
for(f = 0; f < filters; ++f){ |
|
for(k = 0; k < spatial; ++k){ |
|
int index = j*filters*spatial + f*spatial + k; |
|
delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void resize_batchnorm_layer(layer *l, int w, int h) |
|
{ |
|
l->out_h = l->h = h; |
|
l->out_w = l->w = w; |
|
l->outputs = l->inputs = h*w*l->c; |
|
|
|
const int output_size = l->outputs * l->batch; |
|
|
|
l->output = (float*)realloc(l->output, output_size * sizeof(float)); |
|
l->delta = (float*)realloc(l->delta, output_size * sizeof(float)); |
|
|
|
#ifdef GPU |
|
cuda_free(l->output_gpu); |
|
l->output_gpu = cuda_make_array(l->output, output_size); |
|
|
|
if (l->train) { |
|
cuda_free(l->delta_gpu); |
|
l->delta_gpu = cuda_make_array(l->delta, output_size); |
|
|
|
cuda_free(l->x_gpu); |
|
l->x_gpu = cuda_make_array(l->output, output_size); |
|
#ifndef CUDNN |
|
cuda_free(l->x_norm_gpu); |
|
l->x_norm_gpu = cuda_make_array(l->output, output_size); |
|
#endif // not CUDNN |
|
} |
|
|
|
|
|
#ifdef CUDNN |
|
CHECK_CUDNN(cudnnDestroyTensorDescriptor(l->normDstTensorDesc)); |
|
CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc)); |
|
CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w)); |
|
#endif // CUDNN |
|
#endif // GPU |
|
} |
|
|
|
void forward_batchnorm_layer(layer l, network_state state) |
|
{ |
|
if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1); |
|
if(l.type == CONNECTED){ |
|
l.out_c = l.outputs; |
|
l.out_h = l.out_w = 1; |
|
} |
|
if(state.train){ |
|
mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean); |
|
variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance); |
|
|
|
scal_cpu(l.out_c, .9, l.rolling_mean, 1); |
|
axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1); |
|
scal_cpu(l.out_c, .9, l.rolling_variance, 1); |
|
axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1); |
|
|
|
copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1); |
|
normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w); |
|
copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1); |
|
} else { |
|
normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w); |
|
} |
|
scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w); |
|
add_bias(l.output, l.biases, l.batch, l.out_c, l.out_w*l.out_h); |
|
} |
|
|
|
void backward_batchnorm_layer(const layer l, network_state state) |
|
{ |
|
backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates); |
|
|
|
scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w); |
|
|
|
mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta); |
|
variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta); |
|
normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta); |
|
if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1); |
|
} |
|
|
|
void update_batchnorm_layer(layer l, int batch, float learning_rate, float momentum, float decay) |
|
{ |
|
//int size = l.nweights; |
|
axpy_cpu(l.c, learning_rate / batch, l.bias_updates, 1, l.biases, 1); |
|
scal_cpu(l.c, momentum, l.bias_updates, 1); |
|
|
|
axpy_cpu(l.c, learning_rate / batch, l.scale_updates, 1, l.scales, 1); |
|
scal_cpu(l.c, momentum, l.scale_updates, 1); |
|
} |
|
|
|
|
|
|
|
|
|
#ifdef GPU |
|
|
|
void pull_batchnorm_layer(layer l) |
|
{ |
|
cuda_pull_array(l.biases_gpu, l.biases, l.out_c); |
|
cuda_pull_array(l.scales_gpu, l.scales, l.out_c); |
|
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.out_c); |
|
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.out_c); |
|
} |
|
void push_batchnorm_layer(layer l) |
|
{ |
|
cuda_push_array(l.biases_gpu, l.biases, l.out_c); |
|
cuda_push_array(l.scales_gpu, l.scales, l.out_c); |
|
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.out_c); |
|
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.out_c); |
|
} |
|
|
|
void forward_batchnorm_layer_gpu(layer l, network_state state) |
|
{ |
|
if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu); |
|
//copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); |
|
|
|
if (state.net.adversarial) { |
|
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
|
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
|
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); |
|
return; |
|
} |
|
|
|
if (state.train) { |
|
simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_gpu); |
|
|
|
// cbn |
|
if (l.batch_normalize == 2) { |
|
|
|
fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu); |
|
|
|
//fast_v_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.v_cbn_gpu); |
|
const int minibatch_index = state.net.current_subdivision + 1; |
|
const int max_minibatch_index = state.net.subdivisions; |
|
//printf("\n minibatch_index = %d, max_minibatch_index = %d \n", minibatch_index, max_minibatch_index); |
|
const float alpha = 0.01; |
|
|
|
int inverse_variance = 0; |
|
#ifdef CUDNN |
|
inverse_variance = 1; |
|
#endif // CUDNN |
|
|
|
fast_v_cbn_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, minibatch_index, max_minibatch_index, l.m_cbn_avg_gpu, l.v_cbn_avg_gpu, l.variance_gpu, |
|
alpha, l.rolling_mean_gpu, l.rolling_variance_gpu, inverse_variance, .00001); |
|
|
|
normalize_scale_bias_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.scales_gpu, l.biases_gpu, l.batch, l.out_c, l.out_h*l.out_w, inverse_variance, .00001f); |
|
|
|
#ifndef CUDNN |
|
simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_norm_gpu); |
|
#endif // CUDNN |
|
|
|
//printf("\n CBN, minibatch_index = %d \n", minibatch_index); |
|
} |
|
else { |
|
#ifdef CUDNN |
|
float one = 1; |
|
float zero = 0; |
|
cudnnBatchNormalizationForwardTraining(cudnn_handle(), |
|
CUDNN_BATCHNORM_SPATIAL, |
|
&one, |
|
&zero, |
|
l.normDstTensorDesc, |
|
l.x_gpu, // input |
|
l.normDstTensorDesc, |
|
l.output_gpu, // output |
|
l.normTensorDesc, |
|
l.scales_gpu, |
|
l.biases_gpu, |
|
.01, |
|
l.rolling_mean_gpu, // output (should be FP32) |
|
l.rolling_variance_gpu, // output (should be FP32) |
|
.00001, |
|
l.mean_gpu, // output (should be FP32) |
|
l.variance_gpu); // output (should be FP32) |
|
|
|
if (state.net.try_fix_nan) { |
|
fix_nan_and_inf(l.scales_gpu, l.n); |
|
fix_nan_and_inf(l.biases_gpu, l.n); |
|
fix_nan_and_inf(l.mean_gpu, l.n); |
|
fix_nan_and_inf(l.variance_gpu, l.n); |
|
fix_nan_and_inf(l.rolling_mean_gpu, l.n); |
|
fix_nan_and_inf(l.rolling_variance_gpu, l.n); |
|
} |
|
|
|
//simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_norm_gpu); |
|
#else // CUDNN |
|
fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu); |
|
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu); |
|
|
|
scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1); |
|
axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1); |
|
scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1); |
|
axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1); |
|
|
|
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); |
|
normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
|
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1); |
|
|
|
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
|
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); |
|
#endif // CUDNN |
|
} |
|
} |
|
else { |
|
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
|
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
|
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); |
|
} |
|
|
|
} |
|
|
|
void backward_batchnorm_layer_gpu(layer l, network_state state) |
|
{ |
|
if (state.net.adversarial) { |
|
inverse_variance_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu, 0.00001); |
|
|
|
scale_bias_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
|
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
|
return; |
|
} |
|
|
|
if (!state.train) { |
|
//l.mean_gpu = l.rolling_mean_gpu; |
|
//l.variance_gpu = l.rolling_variance_gpu; |
|
simple_copy_ongpu(l.out_c, l.rolling_mean_gpu, l.mean_gpu); |
|
#ifdef CUDNN |
|
inverse_variance_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu, 0.00001); |
|
#else |
|
simple_copy_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu); |
|
#endif |
|
} |
|
|
|
#ifdef CUDNN |
|
float one = 1; |
|
float zero = 0; |
|
cudnnBatchNormalizationBackward(cudnn_handle(), |
|
CUDNN_BATCHNORM_SPATIAL, |
|
&one, |
|
&zero, |
|
&one, |
|
&one, |
|
l.normDstTensorDesc, |
|
l.x_gpu, // input |
|
l.normDstTensorDesc, |
|
l.delta_gpu, // input |
|
l.normDstTensorDesc, |
|
l.output_gpu, //l.x_norm_gpu, // output |
|
l.normTensorDesc, |
|
l.scales_gpu, // input (should be FP32) |
|
l.scale_updates_gpu, // output (should be FP32) |
|
l.bias_updates_gpu, // output (should be FP32) |
|
.00001, |
|
l.mean_gpu, // input (should be FP32) |
|
l.variance_gpu); // input (should be FP32) |
|
simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.delta_gpu); |
|
//simple_copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, l.delta_gpu); |
|
#else // CUDNN |
|
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h); |
|
backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu); |
|
|
|
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
|
|
|
fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu); |
|
fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu); |
|
normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu); |
|
#endif // CUDNN |
|
if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, l.delta_gpu, state.delta); |
|
//copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1); |
|
|
|
if (state.net.try_fix_nan) { |
|
fix_nan_and_inf(l.scale_updates_gpu, l.n); |
|
fix_nan_and_inf(l.bias_updates_gpu, l.n); |
|
} |
|
} |
|
|
|
void update_batchnorm_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale) |
|
{ |
|
float learning_rate = learning_rate_init * l.learning_rate_scale / loss_scale; |
|
//float momentum = a.momentum; |
|
//float decay = a.decay; |
|
//int batch = a.batch; |
|
|
|
axpy_ongpu(l.c, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); |
|
scal_ongpu(l.c, momentum, l.bias_updates_gpu, 1); |
|
|
|
axpy_ongpu(l.c, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); |
|
scal_ongpu(l.c, momentum, l.scale_updates_gpu, 1); |
|
} |
|
|
|
#endif // GPU
|
|
|