You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

425 lines
16 KiB

#include "batchnorm_layer.h"
#include "blas.h"
#include "utils.h"
#include <stdio.h>
layer make_batchnorm_layer(int batch, int w, int h, int c, int train)
{
fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c);
layer layer = { (LAYER_TYPE)0 };
layer.type = BATCHNORM;
layer.batch = batch;
layer.train = train;
layer.h = layer.out_h = h;
layer.w = layer.out_w = w;
layer.c = layer.out_c = c;
layer.n = layer.c;
layer.output = (float*)xcalloc(h * w * c * batch, sizeof(float));
layer.delta = (float*)xcalloc(h * w * c * batch, sizeof(float));
layer.inputs = w*h*c;
layer.outputs = layer.inputs;
layer.biases = (float*)xcalloc(c, sizeof(float));
layer.bias_updates = (float*)xcalloc(c, sizeof(float));
layer.scales = (float*)xcalloc(c, sizeof(float));
layer.scale_updates = (float*)xcalloc(c, sizeof(float));
int i;
for(i = 0; i < c; ++i){
layer.scales[i] = 1;
}
layer.mean = (float*)xcalloc(c, sizeof(float));
layer.variance = (float*)xcalloc(c, sizeof(float));
layer.rolling_mean = (float*)xcalloc(c, sizeof(float));
layer.rolling_variance = (float*)xcalloc(c, sizeof(float));
layer.forward = forward_batchnorm_layer;
layer.backward = backward_batchnorm_layer;
layer.update = update_batchnorm_layer;
#ifdef GPU
layer.forward_gpu = forward_batchnorm_layer_gpu;
layer.backward_gpu = backward_batchnorm_layer_gpu;
layer.update_gpu = update_batchnorm_layer_gpu;
layer.output_gpu = cuda_make_array(layer.output, h * w * c * batch);
layer.biases_gpu = cuda_make_array(layer.biases, c);
layer.scales_gpu = cuda_make_array(layer.scales, c);
if (train) {
layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch);
layer.bias_updates_gpu = cuda_make_array(layer.bias_updates, c);
layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c);
layer.mean_delta_gpu = cuda_make_array(layer.mean, c);
layer.variance_delta_gpu = cuda_make_array(layer.variance, c);
}
layer.mean_gpu = cuda_make_array(layer.mean, c);
layer.variance_gpu = cuda_make_array(layer.variance, c);
layer.rolling_mean_gpu = cuda_make_array(layer.mean, c);
layer.rolling_variance_gpu = cuda_make_array(layer.variance, c);
if (train) {
layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
#ifndef CUDNN
layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs);
#endif // not CUDNN
}
#ifdef CUDNN
CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normTensorDesc));
CHECK_CUDNN(cudnnCreateTensorDescriptor(&layer.normDstTensorDesc));
CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w));
CHECK_CUDNN(cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1));
#endif
#endif
return layer;
}
void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates)
{
int i,b,f;
for(f = 0; f < n; ++f){
float sum = 0;
for(b = 0; b < batch; ++b){
for(i = 0; i < size; ++i){
int index = i + size*(f + n*b);
sum += delta[index] * x_norm[index];
}
}
scale_updates[f] += sum;
}
}
void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta)
{
int i,j,k;
for(i = 0; i < filters; ++i){
mean_delta[i] = 0;
for (j = 0; j < batch; ++j) {
for (k = 0; k < spatial; ++k) {
int index = j*filters*spatial + i*spatial + k;
mean_delta[i] += delta[index];
}
}
mean_delta[i] *= (-1./sqrt(variance[i] + .00001f));
}
}
void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta)
{
int i,j,k;
for(i = 0; i < filters; ++i){
variance_delta[i] = 0;
for(j = 0; j < batch; ++j){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + i*spatial + k;
variance_delta[i] += delta[index]*(x[index] - mean[i]);
}
}
variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.));
}
}
void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta)
{
int f, j, k;
for(j = 0; j < batch; ++j){
for(f = 0; f < filters; ++f){
for(k = 0; k < spatial; ++k){
int index = j*filters*spatial + f*spatial + k;
delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch);
}
}
}
}
void resize_batchnorm_layer(layer *l, int w, int h)
{
l->out_h = l->h = h;
l->out_w = l->w = w;
l->outputs = l->inputs = h*w*l->c;
const int output_size = l->outputs * l->batch;
l->output = (float*)realloc(l->output, output_size * sizeof(float));
l->delta = (float*)realloc(l->delta, output_size * sizeof(float));
#ifdef GPU
cuda_free(l->output_gpu);
l->output_gpu = cuda_make_array(l->output, output_size);
if (l->train) {
cuda_free(l->delta_gpu);
l->delta_gpu = cuda_make_array(l->delta, output_size);
cuda_free(l->x_gpu);
l->x_gpu = cuda_make_array(l->output, output_size);
#ifndef CUDNN
cuda_free(l->x_norm_gpu);
l->x_norm_gpu = cuda_make_array(l->output, output_size);
#endif // not CUDNN
}
#ifdef CUDNN
CHECK_CUDNN(cudnnDestroyTensorDescriptor(l->normDstTensorDesc));
CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc));
CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w));
#endif // CUDNN
#endif // GPU
}
void forward_batchnorm_layer(layer l, network_state state)
{
if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
if(l.type == CONNECTED){
l.out_c = l.outputs;
l.out_h = l.out_w = 1;
}
if(state.train){
mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean);
variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance);
scal_cpu(l.out_c, .9, l.rolling_mean, 1);
axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1);
scal_cpu(l.out_c, .9, l.rolling_variance, 1);
axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1);
copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1);
normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w);
copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1);
} else {
normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w);
}
scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
add_bias(l.output, l.biases, l.batch, l.out_c, l.out_w*l.out_h);
}
void backward_batchnorm_layer(const layer l, network_state state)
{
backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates);
scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w);
mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta);
variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta);
normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1);
}
void update_batchnorm_layer(layer l, int batch, float learning_rate, float momentum, float decay)
{
//int size = l.nweights;
axpy_cpu(l.c, learning_rate / batch, l.bias_updates, 1, l.biases, 1);
scal_cpu(l.c, momentum, l.bias_updates, 1);
axpy_cpu(l.c, learning_rate / batch, l.scale_updates, 1, l.scales, 1);
scal_cpu(l.c, momentum, l.scale_updates, 1);
}
#ifdef GPU
void pull_batchnorm_layer(layer l)
{
cuda_pull_array(l.biases_gpu, l.biases, l.out_c);
cuda_pull_array(l.scales_gpu, l.scales, l.out_c);
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.out_c);
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.out_c);
}
void push_batchnorm_layer(layer l)
{
cuda_push_array(l.biases_gpu, l.biases, l.out_c);
cuda_push_array(l.scales_gpu, l.scales, l.out_c);
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.out_c);
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.out_c);
}
void forward_batchnorm_layer_gpu(layer l, network_state state)
{
if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu);
//copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
if (state.net.adversarial) {
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
return;
}
if (state.train) {
simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_gpu);
// cbn
if (l.batch_normalize == 2) {
fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
//fast_v_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.v_cbn_gpu);
const int minibatch_index = state.net.current_subdivision + 1;
const int max_minibatch_index = state.net.subdivisions;
//printf("\n minibatch_index = %d, max_minibatch_index = %d \n", minibatch_index, max_minibatch_index);
const float alpha = 0.01;
int inverse_variance = 0;
#ifdef CUDNN
inverse_variance = 1;
#endif // CUDNN
fast_v_cbn_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, minibatch_index, max_minibatch_index, l.m_cbn_avg_gpu, l.v_cbn_avg_gpu, l.variance_gpu,
alpha, l.rolling_mean_gpu, l.rolling_variance_gpu, inverse_variance, .00001);
normalize_scale_bias_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.scales_gpu, l.biases_gpu, l.batch, l.out_c, l.out_h*l.out_w, inverse_variance, .00001f);
#ifndef CUDNN
simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_norm_gpu);
#endif // CUDNN
//printf("\n CBN, minibatch_index = %d \n", minibatch_index);
}
else {
#ifdef CUDNN
float one = 1;
float zero = 0;
cudnnBatchNormalizationForwardTraining(cudnn_handle(),
CUDNN_BATCHNORM_SPATIAL,
&one,
&zero,
l.normDstTensorDesc,
l.x_gpu, // input
l.normDstTensorDesc,
l.output_gpu, // output
l.normTensorDesc,
l.scales_gpu,
l.biases_gpu,
.01,
l.rolling_mean_gpu, // output (should be FP32)
l.rolling_variance_gpu, // output (should be FP32)
.00001,
l.mean_gpu, // output (should be FP32)
l.variance_gpu); // output (should be FP32)
if (state.net.try_fix_nan) {
fix_nan_and_inf(l.scales_gpu, l.n);
fix_nan_and_inf(l.biases_gpu, l.n);
fix_nan_and_inf(l.mean_gpu, l.n);
fix_nan_and_inf(l.variance_gpu, l.n);
fix_nan_and_inf(l.rolling_mean_gpu, l.n);
fix_nan_and_inf(l.rolling_variance_gpu, l.n);
}
//simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.x_norm_gpu);
#else // CUDNN
fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu);
fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu);
scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1);
axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1);
scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1);
axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1);
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1);
normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1);
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
#endif // CUDNN
}
}
else {
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
}
}
void backward_batchnorm_layer_gpu(layer l, network_state state)
{
if (state.net.adversarial) {
inverse_variance_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu, 0.00001);
scale_bias_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
return;
}
if (!state.train) {
//l.mean_gpu = l.rolling_mean_gpu;
//l.variance_gpu = l.rolling_variance_gpu;
simple_copy_ongpu(l.out_c, l.rolling_mean_gpu, l.mean_gpu);
#ifdef CUDNN
inverse_variance_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu, 0.00001);
#else
simple_copy_ongpu(l.out_c, l.rolling_variance_gpu, l.variance_gpu);
#endif
}
#ifdef CUDNN
float one = 1;
float zero = 0;
cudnnBatchNormalizationBackward(cudnn_handle(),
CUDNN_BATCHNORM_SPATIAL,
&one,
&zero,
&one,
&one,
l.normDstTensorDesc,
l.x_gpu, // input
l.normDstTensorDesc,
l.delta_gpu, // input
l.normDstTensorDesc,
l.output_gpu, //l.x_norm_gpu, // output
l.normTensorDesc,
l.scales_gpu, // input (should be FP32)
l.scale_updates_gpu, // output (should be FP32)
l.bias_updates_gpu, // output (should be FP32)
.00001,
l.mean_gpu, // input (should be FP32)
l.variance_gpu); // input (should be FP32)
simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.delta_gpu);
//simple_copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, l.delta_gpu);
#else // CUDNN
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h);
backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu);
scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu);
fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu);
normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
#endif // CUDNN
if (l.type == BATCHNORM) simple_copy_ongpu(l.outputs*l.batch, l.delta_gpu, state.delta);
//copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
if (state.net.try_fix_nan) {
fix_nan_and_inf(l.scale_updates_gpu, l.n);
fix_nan_and_inf(l.bias_updates_gpu, l.n);
}
}
void update_batchnorm_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale)
{
float learning_rate = learning_rate_init * l.learning_rate_scale / loss_scale;
//float momentum = a.momentum;
//float decay = a.decay;
//int batch = a.batch;
axpy_ongpu(l.c, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
scal_ongpu(l.c, momentum, l.bias_updates_gpu, 1);
axpy_ongpu(l.c, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
scal_ongpu(l.c, momentum, l.scale_updates_gpu, 1);
}
#endif // GPU