mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1297 lines
40 KiB
1297 lines
40 KiB
#include "network.h" |
|
#include "utils.h" |
|
#include "parser.h" |
|
#include "option_list.h" |
|
#include "blas.h" |
|
#include "assert.h" |
|
#include "classifier.h" |
|
#include "cuda.h" |
|
#ifdef WIN32 |
|
#include <time.h> |
|
#include <winsock.h> |
|
#include "gettimeofday.h" |
|
#else |
|
#include <sys/time.h> |
|
#endif |
|
|
|
#ifdef OPENCV |
|
#include "opencv2/highgui/highgui_c.h" |
|
#include "opencv2/core/version.hpp" |
|
#ifndef CV_VERSION_EPOCH |
|
#include "opencv2/videoio/videoio_c.h" |
|
#endif |
|
image get_image_from_stream(CvCapture *cap); |
|
image get_image_from_stream_cpp(CvCapture *cap); |
|
#include "http_stream.h" |
|
IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size, int dont_show); |
|
|
|
void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches, |
|
float precision, int draw_precision, char *accuracy_name, int dont_show, int mjpeg_port); |
|
|
|
#endif |
|
|
|
float validate_classifier_single(char *datacfg, char *filename, char *weightfile, network *existing_net, int topk_custom); |
|
|
|
float *get_regression_values(char **labels, int n) |
|
{ |
|
float *v = calloc(n, sizeof(float)); |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
char *p = strchr(labels[i], ' '); |
|
*p = 0; |
|
v[i] = atof(p+1); |
|
} |
|
return v; |
|
} |
|
|
|
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int mjpeg_port, int calc_topk) |
|
{ |
|
int i; |
|
|
|
float avg_loss = -1; |
|
char *base = basecfg(cfgfile); |
|
printf("%s\n", base); |
|
printf("%d\n", ngpus); |
|
network *nets = calloc(ngpus, sizeof(network)); |
|
|
|
srand(time(0)); |
|
int seed = rand(); |
|
for(i = 0; i < ngpus; ++i){ |
|
srand(seed); |
|
#ifdef GPU |
|
cuda_set_device(gpus[i]); |
|
#endif |
|
nets[i] = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&nets[i], weightfile); |
|
} |
|
if(clear) *nets[i].seen = 0; |
|
nets[i].learning_rate *= ngpus; |
|
} |
|
srand(time(0)); |
|
network net = nets[0]; |
|
|
|
int imgs = net.batch * net.subdivisions * ngpus; |
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *backup_directory = option_find_str(options, "backup", "/backup/"); |
|
char *label_list = option_find_str(options, "labels", "data/labels.list"); |
|
char *train_list = option_find_str(options, "train", "data/train.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
|
|
char **labels = get_labels(label_list); |
|
list *plist = get_paths(train_list); |
|
char **paths = (char **)list_to_array(plist); |
|
printf("%d\n", plist->size); |
|
int train_images_num = plist->size; |
|
clock_t time; |
|
|
|
load_args args = {0}; |
|
args.w = net.w; |
|
args.h = net.h; |
|
args.threads = 32; |
|
args.hierarchy = net.hierarchy; |
|
|
|
args.min = net.min_crop; |
|
args.max = net.max_crop; |
|
args.flip = net.flip; |
|
args.angle = net.angle; |
|
args.aspect = net.aspect; |
|
args.exposure = net.exposure; |
|
args.saturation = net.saturation; |
|
args.hue = net.hue; |
|
args.size = net.w; |
|
|
|
args.paths = paths; |
|
args.classes = classes; |
|
args.n = imgs; |
|
args.m = train_images_num; |
|
args.labels = labels; |
|
args.type = CLASSIFICATION_DATA; |
|
|
|
#ifdef OPENCV |
|
//args.threads = 3; |
|
IplImage* img = NULL; |
|
float max_img_loss = 10; |
|
int number_of_lines = 100; |
|
int img_size = 1000; |
|
img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size, dont_show); |
|
#endif //OPENCV |
|
|
|
data train; |
|
data buffer; |
|
pthread_t load_thread; |
|
args.d = &buffer; |
|
load_thread = load_data(args); |
|
|
|
int iter_save = get_current_batch(net); |
|
int iter_save_last = get_current_batch(net); |
|
int iter_topk = get_current_batch(net); |
|
float topk = 0; |
|
|
|
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
|
time=clock(); |
|
|
|
pthread_join(load_thread, 0); |
|
train = buffer; |
|
load_thread = load_data(args); |
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
time=clock(); |
|
|
|
float loss = 0; |
|
#ifdef GPU |
|
if(ngpus == 1){ |
|
loss = train_network(net, train); |
|
} else { |
|
loss = train_networks(nets, ngpus, train, 4); |
|
} |
|
#else |
|
loss = train_network(net, train); |
|
#endif |
|
if(avg_loss == -1) avg_loss = loss; |
|
avg_loss = avg_loss*.9 + loss*.1; |
|
|
|
i = get_current_batch(net); |
|
|
|
int calc_topk_for_each = iter_topk + 4 * train_images_num / (net.batch * net.subdivisions); // calculate TOPk for each 4 Epochs |
|
calc_topk_for_each = fmax(calc_topk_for_each, net.burn_in); |
|
calc_topk_for_each = fmax(calc_topk_for_each, 1000); |
|
if (i % 10 == 0) { |
|
if (calc_topk) { |
|
fprintf(stderr, "\n (next TOP5 calculation at %d iterations) ", calc_topk_for_each); |
|
if (topk > 0) fprintf(stderr, " Last accuracy TOP5 = %2.2f %% \n", topk * 100); |
|
} |
|
|
|
if (net.cudnn_half) { |
|
if (i < net.burn_in * 3) fprintf(stderr, " Tensor Cores are disabled until the first %d iterations are reached.\n", 3 * net.burn_in); |
|
else fprintf(stderr, " Tensor Cores are used.\n"); |
|
} |
|
} |
|
|
|
int draw_precision = 0; |
|
if (calc_topk && (i >= calc_topk_for_each || i == net.max_batches)) { |
|
iter_topk = i; |
|
topk = validate_classifier_single(datacfg, cfgfile, weightfile, &net, 5); // calc TOP5 |
|
printf("\n accuracy TOP5 = %f \n", topk); |
|
draw_precision = 1; |
|
} |
|
|
|
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/ train_images_num, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
|
#ifdef OPENCV |
|
draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches, topk, draw_precision, "top5", dont_show, mjpeg_port); |
|
#endif // OPENCV |
|
|
|
if (i >= (iter_save + 1000)) { |
|
iter_save = i; |
|
#ifdef GPU |
|
if (ngpus != 1) sync_nets(nets, ngpus, 0); |
|
#endif |
|
char buff[256]; |
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
|
save_weights(net, buff); |
|
} |
|
|
|
if (i >= (iter_save_last + 100)) { |
|
iter_save_last = i; |
|
#ifdef GPU |
|
if (ngpus != 1) sync_nets(nets, ngpus, 0); |
|
#endif |
|
char buff[256]; |
|
sprintf(buff, "%s/%s_last.weights", backup_directory, base, i); |
|
save_weights(net, buff); |
|
} |
|
free_data(train); |
|
} |
|
#ifdef GPU |
|
if (ngpus != 1) sync_nets(nets, ngpus, 0); |
|
#endif |
|
char buff[256]; |
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
|
save_weights(net, buff); |
|
|
|
#ifdef OPENCV |
|
cvReleaseImage(&img); |
|
cvDestroyAllWindows(); |
|
#endif |
|
|
|
free_network(net); |
|
free_ptrs((void**)labels, classes); |
|
free_ptrs((void**)paths, plist->size); |
|
free_list(plist); |
|
free(base); |
|
} |
|
|
|
|
|
/* |
|
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear) |
|
{ |
|
srand(time(0)); |
|
float avg_loss = -1; |
|
char *base = basecfg(cfgfile); |
|
printf("%s\n", base); |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
if(clear) *net.seen = 0; |
|
|
|
int imgs = net.batch * net.subdivisions; |
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *backup_directory = option_find_str(options, "backup", "/backup/"); |
|
char *label_list = option_find_str(options, "labels", "data/labels.list"); |
|
char *train_list = option_find_str(options, "train", "data/train.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
|
|
char **labels = get_labels(label_list); |
|
list *plist = get_paths(train_list); |
|
char **paths = (char **)list_to_array(plist); |
|
printf("%d\n", plist->size); |
|
int N = plist->size; |
|
clock_t time; |
|
|
|
load_args args = {0}; |
|
args.w = net.w; |
|
args.h = net.h; |
|
args.threads = 8; |
|
|
|
args.min = net.min_crop; |
|
args.max = net.max_crop; |
|
args.flip = net.flip; |
|
args.angle = net.angle; |
|
args.aspect = net.aspect; |
|
args.exposure = net.exposure; |
|
args.saturation = net.saturation; |
|
args.hue = net.hue; |
|
args.size = net.w; |
|
args.hierarchy = net.hierarchy; |
|
|
|
args.paths = paths; |
|
args.classes = classes; |
|
args.n = imgs; |
|
args.m = N; |
|
args.labels = labels; |
|
args.type = CLASSIFICATION_DATA; |
|
|
|
data train; |
|
data buffer; |
|
pthread_t load_thread; |
|
args.d = &buffer; |
|
load_thread = load_data(args); |
|
|
|
int epoch = (*net.seen)/N; |
|
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
|
time=clock(); |
|
|
|
pthread_join(load_thread, 0); |
|
train = buffer; |
|
load_thread = load_data(args); |
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time)); |
|
time=clock(); |
|
|
|
#ifdef OPENCV |
|
if(0){ |
|
int u; |
|
for(u = 0; u < imgs; ++u){ |
|
image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); |
|
show_image(im, "loaded"); |
|
cvWaitKey(0); |
|
} |
|
} |
|
#endif |
|
|
|
float loss = train_network(net, train); |
|
free_data(train); |
|
|
|
if(avg_loss == -1) avg_loss = loss; |
|
avg_loss = avg_loss*.9 + loss*.1; |
|
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
|
if(*net.seen/N > epoch){ |
|
epoch = *net.seen/N; |
|
char buff[256]; |
|
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
|
save_weights(net, buff); |
|
} |
|
if(get_current_batch(net)%100 == 0){ |
|
char buff[256]; |
|
sprintf(buff, "%s/%s.backup",backup_directory,base); |
|
save_weights(net, buff); |
|
} |
|
} |
|
char buff[256]; |
|
sprintf(buff, "%s/%s.weights", backup_directory, base); |
|
save_weights(net, buff); |
|
|
|
free_network(net); |
|
free_ptrs((void**)labels, classes); |
|
free_ptrs((void**)paths, plist->size); |
|
free_list(plist); |
|
free(base); |
|
} |
|
*/ |
|
|
|
void validate_classifier_crop(char *datacfg, char *filename, char *weightfile) |
|
{ |
|
int i = 0; |
|
network net = parse_network_cfg(filename); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
srand(time(0)); |
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *label_list = option_find_str(options, "labels", "data/labels.list"); |
|
char *valid_list = option_find_str(options, "valid", "data/train.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
int topk = option_find_int(options, "top", 1); |
|
if (topk > classes) topk = classes; |
|
|
|
char **labels = get_labels(label_list); |
|
list *plist = get_paths(valid_list); |
|
|
|
char **paths = (char **)list_to_array(plist); |
|
int m = plist->size; |
|
free_list(plist); |
|
|
|
clock_t time; |
|
float avg_acc = 0; |
|
float avg_topk = 0; |
|
int splits = m/1000; |
|
int num = (i+1)*m/splits - i*m/splits; |
|
|
|
data val, buffer; |
|
|
|
load_args args = {0}; |
|
args.w = net.w; |
|
args.h = net.h; |
|
|
|
args.paths = paths; |
|
args.classes = classes; |
|
args.n = num; |
|
args.m = 0; |
|
args.labels = labels; |
|
args.d = &buffer; |
|
args.type = OLD_CLASSIFICATION_DATA; |
|
|
|
pthread_t load_thread = load_data_in_thread(args); |
|
for(i = 1; i <= splits; ++i){ |
|
time=clock(); |
|
|
|
pthread_join(load_thread, 0); |
|
val = buffer; |
|
|
|
num = (i+1)*m/splits - i*m/splits; |
|
char **part = paths+(i*m/splits); |
|
if(i != splits){ |
|
args.paths = part; |
|
load_thread = load_data_in_thread(args); |
|
} |
|
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
|
|
|
time=clock(); |
|
float *acc = network_accuracies(net, val, topk); |
|
avg_acc += acc[0]; |
|
avg_topk += acc[1]; |
|
printf("%d: top 1: %f, top %d: %f, %lf seconds, %d images\n", i, avg_acc/i, topk, avg_topk/i, sec(clock()-time), val.X.rows); |
|
free_data(val); |
|
} |
|
} |
|
|
|
void validate_classifier_10(char *datacfg, char *filename, char *weightfile) |
|
{ |
|
int i, j; |
|
network net = parse_network_cfg(filename); |
|
set_batch_network(&net, 1); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
srand(time(0)); |
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *label_list = option_find_str(options, "labels", "data/labels.list"); |
|
char *valid_list = option_find_str(options, "valid", "data/train.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
int topk = option_find_int(options, "top", 1); |
|
if (topk > classes) topk = classes; |
|
|
|
char **labels = get_labels(label_list); |
|
list *plist = get_paths(valid_list); |
|
|
|
char **paths = (char **)list_to_array(plist); |
|
int m = plist->size; |
|
free_list(plist); |
|
|
|
float avg_acc = 0; |
|
float avg_topk = 0; |
|
int *indexes = calloc(topk, sizeof(int)); |
|
|
|
for(i = 0; i < m; ++i){ |
|
int class_id = -1; |
|
char *path = paths[i]; |
|
for(j = 0; j < classes; ++j){ |
|
if(strstr(path, labels[j])){ |
|
class_id = j; |
|
break; |
|
} |
|
} |
|
int w = net.w; |
|
int h = net.h; |
|
int shift = 32; |
|
image im = load_image_color(paths[i], w+shift, h+shift); |
|
image images[10]; |
|
images[0] = crop_image(im, -shift, -shift, w, h); |
|
images[1] = crop_image(im, shift, -shift, w, h); |
|
images[2] = crop_image(im, 0, 0, w, h); |
|
images[3] = crop_image(im, -shift, shift, w, h); |
|
images[4] = crop_image(im, shift, shift, w, h); |
|
flip_image(im); |
|
images[5] = crop_image(im, -shift, -shift, w, h); |
|
images[6] = crop_image(im, shift, -shift, w, h); |
|
images[7] = crop_image(im, 0, 0, w, h); |
|
images[8] = crop_image(im, -shift, shift, w, h); |
|
images[9] = crop_image(im, shift, shift, w, h); |
|
float *pred = calloc(classes, sizeof(float)); |
|
for(j = 0; j < 10; ++j){ |
|
float *p = network_predict(net, images[j].data); |
|
if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1); |
|
axpy_cpu(classes, 1, p, 1, pred, 1); |
|
free_image(images[j]); |
|
} |
|
free_image(im); |
|
top_k(pred, classes, topk, indexes); |
|
free(pred); |
|
if(indexes[0] == class_id) avg_acc += 1; |
|
for(j = 0; j < topk; ++j){ |
|
if(indexes[j] == class_id) avg_topk += 1; |
|
} |
|
|
|
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
|
} |
|
} |
|
|
|
void validate_classifier_full(char *datacfg, char *filename, char *weightfile) |
|
{ |
|
int i, j; |
|
network net = parse_network_cfg(filename); |
|
set_batch_network(&net, 1); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
srand(time(0)); |
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *label_list = option_find_str(options, "labels", "data/labels.list"); |
|
char *valid_list = option_find_str(options, "valid", "data/train.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
int topk = option_find_int(options, "top", 1); |
|
if (topk > classes) topk = classes; |
|
|
|
char **labels = get_labels(label_list); |
|
list *plist = get_paths(valid_list); |
|
|
|
char **paths = (char **)list_to_array(plist); |
|
int m = plist->size; |
|
free_list(plist); |
|
|
|
float avg_acc = 0; |
|
float avg_topk = 0; |
|
int *indexes = calloc(topk, sizeof(int)); |
|
|
|
int size = net.w; |
|
for(i = 0; i < m; ++i){ |
|
int class_id = -1; |
|
char *path = paths[i]; |
|
for(j = 0; j < classes; ++j){ |
|
if(strstr(path, labels[j])){ |
|
class_id = j; |
|
break; |
|
} |
|
} |
|
image im = load_image_color(paths[i], 0, 0); |
|
image resized = resize_min(im, size); |
|
resize_network(&net, resized.w, resized.h); |
|
//show_image(im, "orig"); |
|
//show_image(crop, "cropped"); |
|
//cvWaitKey(0); |
|
float *pred = network_predict(net, resized.data); |
|
if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1); |
|
|
|
free_image(im); |
|
free_image(resized); |
|
top_k(pred, classes, topk, indexes); |
|
|
|
if(indexes[0] == class_id) avg_acc += 1; |
|
for(j = 0; j < topk; ++j){ |
|
if(indexes[j] == class_id) avg_topk += 1; |
|
} |
|
|
|
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
|
} |
|
} |
|
|
|
|
|
float validate_classifier_single(char *datacfg, char *filename, char *weightfile, network *existing_net, int topk_custom) |
|
{ |
|
int i, j; |
|
network net; |
|
int old_batch = -1; |
|
if (existing_net) { |
|
net = *existing_net; // for validation during training |
|
old_batch = net.batch; |
|
set_batch_network(&net, 1); |
|
} |
|
else { |
|
net = parse_network_cfg_custom(filename, 1, 0); |
|
if (weightfile) { |
|
load_weights(&net, weightfile); |
|
} |
|
//set_batch_network(&net, 1); |
|
fuse_conv_batchnorm(net); |
|
calculate_binary_weights(net); |
|
} |
|
srand(time(0)); |
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *label_list = option_find_str(options, "labels", "data/labels.list"); |
|
char *leaf_list = option_find_str(options, "leaves", 0); |
|
if(leaf_list) change_leaves(net.hierarchy, leaf_list); |
|
char *valid_list = option_find_str(options, "valid", "data/train.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
int topk = option_find_int(options, "top", 1); |
|
if (topk_custom > 0) topk = topk_custom; // for validation during training |
|
if (topk > classes) topk = classes; |
|
printf(" TOP calculation...\n"); |
|
|
|
char **labels = get_labels(label_list); |
|
list *plist = get_paths(valid_list); |
|
|
|
char **paths = (char **)list_to_array(plist); |
|
int m = plist->size; |
|
free_list(plist); |
|
|
|
float avg_acc = 0; |
|
float avg_topk = 0; |
|
int *indexes = calloc(topk, sizeof(int)); |
|
|
|
for(i = 0; i < m; ++i){ |
|
int class_id = -1; |
|
char *path = paths[i]; |
|
for(j = 0; j < classes; ++j){ |
|
if(strstr(path, labels[j])){ |
|
class_id = j; |
|
break; |
|
} |
|
} |
|
image im = load_image_color(paths[i], 0, 0); |
|
image resized = resize_min(im, net.w); |
|
image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h); |
|
//show_image(im, "orig"); |
|
//show_image(crop, "cropped"); |
|
//cvWaitKey(0); |
|
float *pred = network_predict(net, crop.data); |
|
if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1); |
|
|
|
if(resized.data != im.data) free_image(resized); |
|
free_image(im); |
|
free_image(crop); |
|
top_k(pred, classes, topk, indexes); |
|
|
|
if(indexes[0] == class_id) avg_acc += 1; |
|
for(j = 0; j < topk; ++j){ |
|
if(indexes[j] == class_id) avg_topk += 1; |
|
} |
|
|
|
if (existing_net) printf("\r"); |
|
else printf("\n"); |
|
printf("%d: top 1: %f, top %d: %f", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
|
} |
|
if (existing_net) { |
|
set_batch_network(&net, old_batch); |
|
} |
|
float topk_result = avg_topk / i; |
|
return topk_result; |
|
} |
|
|
|
void validate_classifier_multi(char *datacfg, char *filename, char *weightfile) |
|
{ |
|
int i, j; |
|
network net = parse_network_cfg(filename); |
|
set_batch_network(&net, 1); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
srand(time(0)); |
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *label_list = option_find_str(options, "labels", "data/labels.list"); |
|
char *valid_list = option_find_str(options, "valid", "data/train.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
int topk = option_find_int(options, "top", 1); |
|
if (topk > classes) topk = classes; |
|
|
|
char **labels = get_labels(label_list); |
|
list *plist = get_paths(valid_list); |
|
int scales[] = {224, 288, 320, 352, 384}; |
|
int nscales = sizeof(scales)/sizeof(scales[0]); |
|
|
|
char **paths = (char **)list_to_array(plist); |
|
int m = plist->size; |
|
free_list(plist); |
|
|
|
float avg_acc = 0; |
|
float avg_topk = 0; |
|
int *indexes = calloc(topk, sizeof(int)); |
|
|
|
for(i = 0; i < m; ++i){ |
|
int class_id = -1; |
|
char *path = paths[i]; |
|
for(j = 0; j < classes; ++j){ |
|
if(strstr(path, labels[j])){ |
|
class_id = j; |
|
break; |
|
} |
|
} |
|
float *pred = calloc(classes, sizeof(float)); |
|
image im = load_image_color(paths[i], 0, 0); |
|
for(j = 0; j < nscales; ++j){ |
|
image r = resize_min(im, scales[j]); |
|
resize_network(&net, r.w, r.h); |
|
float *p = network_predict(net, r.data); |
|
if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1); |
|
axpy_cpu(classes, 1, p, 1, pred, 1); |
|
flip_image(r); |
|
p = network_predict(net, r.data); |
|
axpy_cpu(classes, 1, p, 1, pred, 1); |
|
if(r.data != im.data) free_image(r); |
|
} |
|
free_image(im); |
|
top_k(pred, classes, topk, indexes); |
|
free(pred); |
|
if(indexes[0] == class_id) avg_acc += 1; |
|
for(j = 0; j < topk; ++j){ |
|
if(indexes[j] == class_id) avg_topk += 1; |
|
} |
|
|
|
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
|
} |
|
} |
|
|
|
void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int layer_num) |
|
{ |
|
network net = parse_network_cfg_custom(cfgfile, 1, 0); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
set_batch_network(&net, 1); |
|
srand(2222222); |
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *name_list = option_find_str(options, "names", 0); |
|
if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
int top = option_find_int(options, "top", 1); |
|
if (top > classes) top = classes; |
|
|
|
int i = 0; |
|
char **names = get_labels(name_list); |
|
clock_t time; |
|
int *indexes = calloc(top, sizeof(int)); |
|
char buff[256]; |
|
char *input = buff; |
|
while(1){ |
|
if(filename){ |
|
strncpy(input, filename, 256); |
|
}else{ |
|
printf("Enter Image Path: "); |
|
fflush(stdout); |
|
input = fgets(input, 256, stdin); |
|
if(!input) return; |
|
strtok(input, "\n"); |
|
} |
|
image orig = load_image_color(input, 0, 0); |
|
image r = resize_min(orig, 256); |
|
image im = crop_image(r, (r.w - 224 - 1)/2 + 1, (r.h - 224 - 1)/2 + 1, 224, 224); |
|
float mean[] = {0.48263312050943, 0.45230225481413, 0.40099074308742}; |
|
float std[] = {0.22590347483426, 0.22120921437787, 0.22103996251583}; |
|
float var[3]; |
|
var[0] = std[0]*std[0]; |
|
var[1] = std[1]*std[1]; |
|
var[2] = std[2]*std[2]; |
|
|
|
normalize_cpu(im.data, mean, var, 1, 3, im.w*im.h); |
|
|
|
float *X = im.data; |
|
time=clock(); |
|
float *predictions = network_predict(net, X); |
|
|
|
layer l = net.layers[layer_num]; |
|
for(i = 0; i < l.c; ++i){ |
|
if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]); |
|
} |
|
#ifdef GPU |
|
cuda_pull_array(l.output_gpu, l.output, l.outputs); |
|
#endif |
|
for(i = 0; i < l.outputs; ++i){ |
|
printf("%f\n", l.output[i]); |
|
} |
|
/* |
|
|
|
printf("\n\nWeights\n"); |
|
for(i = 0; i < l.n*l.size*l.size*l.c; ++i){ |
|
printf("%f\n", l.filters[i]); |
|
} |
|
|
|
printf("\n\nBiases\n"); |
|
for(i = 0; i < l.n; ++i){ |
|
printf("%f\n", l.biases[i]); |
|
} |
|
*/ |
|
|
|
top_predictions(net, top, indexes); |
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
|
for(i = 0; i < top; ++i){ |
|
int index = indexes[i]; |
|
printf("%s: %f\n", names[index], predictions[index]); |
|
} |
|
free_image(im); |
|
if (filename) break; |
|
} |
|
} |
|
|
|
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top) |
|
{ |
|
network net = parse_network_cfg_custom(cfgfile, 1, 0); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
set_batch_network(&net, 1); |
|
srand(2222222); |
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *name_list = option_find_str(options, "names", 0); |
|
if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
if (top == 0) top = option_find_int(options, "top", 1); |
|
if (top > classes) top = classes; |
|
|
|
int i = 0; |
|
char **names = get_labels(name_list); |
|
clock_t time; |
|
int *indexes = calloc(top, sizeof(int)); |
|
char buff[256]; |
|
char *input = buff; |
|
int size = net.w; |
|
while(1){ |
|
if(filename){ |
|
strncpy(input, filename, 256); |
|
}else{ |
|
printf("Enter Image Path: "); |
|
fflush(stdout); |
|
input = fgets(input, 256, stdin); |
|
if(!input) return; |
|
strtok(input, "\n"); |
|
} |
|
image im = load_image_color(input, 0, 0); |
|
image r = letterbox_image(im, net.w, net.h); |
|
//image r = resize_min(im, size); |
|
//resize_network(&net, r.w, r.h); |
|
printf("%d %d\n", r.w, r.h); |
|
|
|
float *X = r.data; |
|
time=clock(); |
|
float *predictions = network_predict(net, X); |
|
if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 0); |
|
top_k(predictions, net.outputs, top, indexes); |
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
|
for(i = 0; i < top; ++i){ |
|
int index = indexes[i]; |
|
if(net.hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net.hierarchy->parent[index] >= 0) ? names[net.hierarchy->parent[index]] : "Root"); |
|
else printf("%s: %f\n",names[index], predictions[index]); |
|
} |
|
if(r.data != im.data) free_image(r); |
|
free_image(im); |
|
if (filename) break; |
|
} |
|
} |
|
|
|
|
|
void label_classifier(char *datacfg, char *filename, char *weightfile) |
|
{ |
|
int i; |
|
network net = parse_network_cfg(filename); |
|
set_batch_network(&net, 1); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
srand(time(0)); |
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *label_list = option_find_str(options, "names", "data/labels.list"); |
|
char *test_list = option_find_str(options, "test", "data/train.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
|
|
char **labels = get_labels(label_list); |
|
list *plist = get_paths(test_list); |
|
|
|
char **paths = (char **)list_to_array(plist); |
|
int m = plist->size; |
|
free_list(plist); |
|
|
|
for(i = 0; i < m; ++i){ |
|
image im = load_image_color(paths[i], 0, 0); |
|
image resized = resize_min(im, net.w); |
|
image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h); |
|
float *pred = network_predict(net, crop.data); |
|
|
|
if(resized.data != im.data) free_image(resized); |
|
free_image(im); |
|
free_image(crop); |
|
int ind = max_index(pred, classes); |
|
|
|
printf("%s\n", labels[ind]); |
|
} |
|
} |
|
|
|
|
|
void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer) |
|
{ |
|
int curr = 0; |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
srand(time(0)); |
|
|
|
list *options = read_data_cfg(datacfg); |
|
|
|
char *test_list = option_find_str(options, "test", "data/test.list"); |
|
int classes = option_find_int(options, "classes", 2); |
|
|
|
list *plist = get_paths(test_list); |
|
|
|
char **paths = (char **)list_to_array(plist); |
|
int m = plist->size; |
|
free_list(plist); |
|
|
|
clock_t time; |
|
|
|
data val, buffer; |
|
|
|
load_args args = {0}; |
|
args.w = net.w; |
|
args.h = net.h; |
|
args.paths = paths; |
|
args.classes = classes; |
|
args.n = net.batch; |
|
args.m = 0; |
|
args.labels = 0; |
|
args.d = &buffer; |
|
args.type = OLD_CLASSIFICATION_DATA; |
|
|
|
pthread_t load_thread = load_data_in_thread(args); |
|
for(curr = net.batch; curr < m; curr += net.batch){ |
|
time=clock(); |
|
|
|
pthread_join(load_thread, 0); |
|
val = buffer; |
|
|
|
if(curr < m){ |
|
args.paths = paths + curr; |
|
if (curr + net.batch > m) args.n = m - curr; |
|
load_thread = load_data_in_thread(args); |
|
} |
|
fprintf(stderr, "Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time)); |
|
|
|
time=clock(); |
|
matrix pred = network_predict_data(net, val); |
|
|
|
int i, j; |
|
if (target_layer >= 0){ |
|
//layer l = net.layers[target_layer]; |
|
} |
|
|
|
for(i = 0; i < pred.rows; ++i){ |
|
printf("%s", paths[curr-net.batch+i]); |
|
for(j = 0; j < pred.cols; ++j){ |
|
printf("\t%g", pred.vals[i][j]); |
|
} |
|
printf("\n"); |
|
} |
|
|
|
free_matrix(pred); |
|
|
|
fprintf(stderr, "%lf seconds, %d images, %d total\n", sec(clock()-time), val.X.rows, curr); |
|
free_data(val); |
|
} |
|
} |
|
|
|
|
|
void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) |
|
{ |
|
#ifdef OPENCV |
|
float threat = 0; |
|
float roll = .2; |
|
|
|
printf("Classifier Demo\n"); |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
set_batch_network(&net, 1); |
|
list *options = read_data_cfg(datacfg); |
|
|
|
srand(2222222); |
|
CvCapture * cap; |
|
|
|
if (filename) { |
|
//cap = cvCaptureFromFile(filename); |
|
cap = get_capture_video_stream(filename); |
|
} |
|
else { |
|
//cap = cvCaptureFromCAM(cam_index); |
|
cap = get_capture_webcam(cam_index); |
|
} |
|
|
|
int classes = option_find_int(options, "classes", 2); |
|
int top = option_find_int(options, "top", 1); |
|
if (top > classes) top = classes; |
|
|
|
char *name_list = option_find_str(options, "names", 0); |
|
char **names = get_labels(name_list); |
|
|
|
int *indexes = calloc(top, sizeof(int)); |
|
|
|
if(!cap) error("Couldn't connect to webcam.\n"); |
|
//cvNamedWindow("Threat", CV_WINDOW_NORMAL); |
|
//cvResizeWindow("Threat", 512, 512); |
|
float fps = 0; |
|
int i; |
|
|
|
int count = 0; |
|
|
|
while(1){ |
|
++count; |
|
struct timeval tval_before, tval_after, tval_result; |
|
gettimeofday(&tval_before, NULL); |
|
|
|
//image in = get_image_from_stream(cap); |
|
image in = get_image_from_stream_cpp(cap); |
|
if(!in.data) break; |
|
image in_s = resize_image(in, net.w, net.h); |
|
|
|
image out = in; |
|
int x1 = out.w / 20; |
|
int y1 = out.h / 20; |
|
int x2 = 2*x1; |
|
int y2 = out.h - out.h/20; |
|
|
|
int border = .01*out.h; |
|
int h = y2 - y1 - 2*border; |
|
int w = x2 - x1 - 2*border; |
|
|
|
float *predictions = network_predict(net, in_s.data); |
|
float curr_threat = 0; |
|
if(1){ |
|
curr_threat = predictions[0] * 0 + |
|
predictions[1] * .6 + |
|
predictions[2]; |
|
} else { |
|
curr_threat = predictions[218] + |
|
predictions[539] + |
|
predictions[540] + |
|
predictions[368] + |
|
predictions[369] + |
|
predictions[370]; |
|
} |
|
threat = roll * curr_threat + (1-roll) * threat; |
|
|
|
draw_box_width(out, x2 + border, y1 + .02*h, x2 + .5 * w, y1 + .02*h + border, border, 0,0,0); |
|
if(threat > .97) { |
|
draw_box_width(out, x2 + .5 * w + border, |
|
y1 + .02*h - 2*border, |
|
x2 + .5 * w + 6*border, |
|
y1 + .02*h + 3*border, 3*border, 1,0,0); |
|
} |
|
draw_box_width(out, x2 + .5 * w + border, |
|
y1 + .02*h - 2*border, |
|
x2 + .5 * w + 6*border, |
|
y1 + .02*h + 3*border, .5*border, 0,0,0); |
|
draw_box_width(out, x2 + border, y1 + .42*h, x2 + .5 * w, y1 + .42*h + border, border, 0,0,0); |
|
if(threat > .57) { |
|
draw_box_width(out, x2 + .5 * w + border, |
|
y1 + .42*h - 2*border, |
|
x2 + .5 * w + 6*border, |
|
y1 + .42*h + 3*border, 3*border, 1,1,0); |
|
} |
|
draw_box_width(out, x2 + .5 * w + border, |
|
y1 + .42*h - 2*border, |
|
x2 + .5 * w + 6*border, |
|
y1 + .42*h + 3*border, .5*border, 0,0,0); |
|
|
|
draw_box_width(out, x1, y1, x2, y2, border, 0,0,0); |
|
for(i = 0; i < threat * h ; ++i){ |
|
float ratio = (float) i / h; |
|
float r = (ratio < .5) ? (2*(ratio)) : 1; |
|
float g = (ratio < .5) ? 1 : 1 - 2*(ratio - .5); |
|
draw_box_width(out, x1 + border, y2 - border - i, x2 - border, y2 - border - i, 1, r, g, 0); |
|
} |
|
top_predictions(net, top, indexes); |
|
char buff[256]; |
|
sprintf(buff, "/home/pjreddie/tmp/threat_%06d", count); |
|
//save_image(out, buff); |
|
|
|
printf("\033[2J"); |
|
printf("\033[1;1H"); |
|
printf("\nFPS:%.0f\n",fps); |
|
|
|
for(i = 0; i < top; ++i){ |
|
int index = indexes[i]; |
|
printf("%.1f%%: %s\n", predictions[index]*100, names[index]); |
|
} |
|
|
|
if(1){ |
|
show_image(out, "Threat"); |
|
cvWaitKey(10); |
|
} |
|
free_image(in_s); |
|
free_image(in); |
|
|
|
gettimeofday(&tval_after, NULL); |
|
timersub(&tval_after, &tval_before, &tval_result); |
|
float curr = 1000000.f/((long int)tval_result.tv_usec); |
|
fps = .9*fps + .1*curr; |
|
} |
|
#endif |
|
} |
|
|
|
|
|
void gun_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) |
|
{ |
|
#ifdef OPENCV |
|
int bad_cats[] = {218, 539, 540, 1213, 1501, 1742, 1911, 2415, 4348, 19223, 368, 369, 370, 1133, 1200, 1306, 2122, 2301, 2537, 2823, 3179, 3596, 3639, 4489, 5107, 5140, 5289, 6240, 6631, 6762, 7048, 7171, 7969, 7984, 7989, 8824, 8927, 9915, 10270, 10448, 13401, 15205, 18358, 18894, 18895, 19249, 19697}; |
|
|
|
printf("Classifier Demo\n"); |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
set_batch_network(&net, 1); |
|
list *options = read_data_cfg(datacfg); |
|
|
|
srand(2222222); |
|
CvCapture * cap; |
|
|
|
if (filename) { |
|
//cap = cvCaptureFromFile(filename); |
|
cap = get_capture_video_stream(filename); |
|
} |
|
else { |
|
//cap = cvCaptureFromCAM(cam_index); |
|
cap = get_capture_webcam(cam_index); |
|
} |
|
|
|
int classes = option_find_int(options, "classes", 2); |
|
int top = option_find_int(options, "top", 1); |
|
if (top > classes) top = classes; |
|
|
|
char *name_list = option_find_str(options, "names", 0); |
|
char **names = get_labels(name_list); |
|
|
|
int *indexes = calloc(top, sizeof(int)); |
|
|
|
if(!cap) error("Couldn't connect to webcam.\n"); |
|
cvNamedWindow("Threat Detection", CV_WINDOW_NORMAL); |
|
cvResizeWindow("Threat Detection", 512, 512); |
|
float fps = 0; |
|
int i; |
|
|
|
while(1){ |
|
struct timeval tval_before, tval_after, tval_result; |
|
gettimeofday(&tval_before, NULL); |
|
|
|
//image in = get_image_from_stream(cap); |
|
image in = get_image_from_stream_cpp(cap); |
|
image in_s = resize_image(in, net.w, net.h); |
|
show_image(in, "Threat Detection"); |
|
|
|
float *predictions = network_predict(net, in_s.data); |
|
top_predictions(net, top, indexes); |
|
|
|
printf("\033[2J"); |
|
printf("\033[1;1H"); |
|
|
|
int threat = 0; |
|
for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){ |
|
int index = bad_cats[i]; |
|
if(predictions[index] > .01){ |
|
printf("Threat Detected!\n"); |
|
threat = 1; |
|
break; |
|
} |
|
} |
|
if(!threat) printf("Scanning...\n"); |
|
for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){ |
|
int index = bad_cats[i]; |
|
if(predictions[index] > .01){ |
|
printf("%s\n", names[index]); |
|
} |
|
} |
|
|
|
free_image(in_s); |
|
free_image(in); |
|
|
|
cvWaitKey(10); |
|
|
|
gettimeofday(&tval_after, NULL); |
|
timersub(&tval_after, &tval_before, &tval_result); |
|
float curr = 1000000.f/((long int)tval_result.tv_usec); |
|
fps = .9*fps + .1*curr; |
|
} |
|
#endif |
|
} |
|
|
|
void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) |
|
{ |
|
#ifdef OPENCV |
|
printf("Classifier Demo\n"); |
|
network net = parse_network_cfg_custom(cfgfile, 1, 0); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
set_batch_network(&net, 1); |
|
list *options = read_data_cfg(datacfg); |
|
|
|
srand(2222222); |
|
CvCapture * cap; |
|
|
|
if(filename){ |
|
//cap = cvCaptureFromFile(filename); |
|
cap = get_capture_video_stream(filename); |
|
}else{ |
|
//cap = cvCaptureFromCAM(cam_index); |
|
cap = get_capture_webcam(cam_index); |
|
} |
|
|
|
int classes = option_find_int(options, "classes", 2); |
|
int top = option_find_int(options, "top", 1); |
|
if (top > classes) top = classes; |
|
|
|
char *name_list = option_find_str(options, "names", 0); |
|
char **names = get_labels(name_list); |
|
|
|
int *indexes = calloc(top, sizeof(int)); |
|
|
|
if(!cap) error("Couldn't connect to webcam.\n"); |
|
cvNamedWindow("Classifier", CV_WINDOW_NORMAL); |
|
cvResizeWindow("Classifier", 512, 512); |
|
float fps = 0; |
|
int i; |
|
|
|
while(1){ |
|
struct timeval tval_before, tval_after, tval_result; |
|
gettimeofday(&tval_before, NULL); |
|
|
|
//image in = get_image_from_stream(cap); |
|
image in = get_image_from_stream_cpp(cap); |
|
image in_s = resize_image(in, net.w, net.h); |
|
show_image(in, "Classifier"); |
|
|
|
float *predictions = network_predict(net, in_s.data); |
|
if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 1); |
|
top_predictions(net, top, indexes); |
|
|
|
printf("\033[2J"); |
|
printf("\033[1;1H"); |
|
printf("\nFPS:%.0f\n",fps); |
|
|
|
for(i = 0; i < top; ++i){ |
|
int index = indexes[i]; |
|
printf("%.1f%%: %s\n", predictions[index]*100, names[index]); |
|
} |
|
|
|
free_image(in_s); |
|
free_image(in); |
|
|
|
cvWaitKey(10); |
|
|
|
gettimeofday(&tval_after, NULL); |
|
timersub(&tval_after, &tval_before, &tval_result); |
|
float curr = 1000000.f/((long int)tval_result.tv_usec); |
|
fps = .9*fps + .1*curr; |
|
} |
|
#endif |
|
} |
|
|
|
|
|
void run_classifier(int argc, char **argv) |
|
{ |
|
if(argc < 4){ |
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
|
return; |
|
} |
|
|
|
int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1); |
|
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); |
|
int *gpus = 0; |
|
int gpu = 0; |
|
int ngpus = 0; |
|
if(gpu_list){ |
|
printf("%s\n", gpu_list); |
|
int len = strlen(gpu_list); |
|
ngpus = 1; |
|
int i; |
|
for(i = 0; i < len; ++i){ |
|
if (gpu_list[i] == ',') ++ngpus; |
|
} |
|
gpus = calloc(ngpus, sizeof(int)); |
|
for(i = 0; i < ngpus; ++i){ |
|
gpus[i] = atoi(gpu_list); |
|
gpu_list = strchr(gpu_list, ',')+1; |
|
} |
|
} else { |
|
gpu = gpu_index; |
|
gpus = &gpu; |
|
ngpus = 1; |
|
} |
|
|
|
int dont_show = find_arg(argc, argv, "-dont_show"); |
|
int calc_topk = find_arg(argc, argv, "-topk"); |
|
int cam_index = find_int_arg(argc, argv, "-c", 0); |
|
int top = find_int_arg(argc, argv, "-t", 0); |
|
int clear = find_arg(argc, argv, "-clear"); |
|
char *data = argv[3]; |
|
char *cfg = argv[4]; |
|
char *weights = (argc > 5) ? argv[5] : 0; |
|
char *filename = (argc > 6) ? argv[6]: 0; |
|
char *layer_s = (argc > 7) ? argv[7]: 0; |
|
int layer = layer_s ? atoi(layer_s) : -1; |
|
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top); |
|
else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); |
|
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear, dont_show, mjpeg_port, calc_topk); |
|
else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); |
|
else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename); |
|
else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename); |
|
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); |
|
else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights); |
|
else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights, NULL, -1); |
|
else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); |
|
else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); |
|
else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights); |
|
else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights); |
|
} |
|
|
|
|
|
|