You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

95 lines
2.6 KiB

#include "convolutional_layer.h"
double convolution_activation(double x)
{
return x*(x>0);
}
double convolution_gradient(double x)
{
return (x>=0);
}
convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride)
{
int i;
convolutional_layer layer;
layer.n = n;
layer.stride = stride;
layer.kernels = calloc(n, sizeof(image));
layer.kernel_updates = calloc(n, sizeof(image));
for(i = 0; i < n; ++i){
layer.kernels[i] = make_random_kernel(size, c);
layer.kernel_updates[i] = make_random_kernel(size, c);
}
layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n);
layer.upsampled = make_image(h,w,n);
return layer;
}
void run_convolutional_layer(const image input, const convolutional_layer layer)
{
int i;
for(i = 0; i < layer.n; ++i){
convolve(input, layer.kernels[i], layer.stride, i, layer.output);
}
for(i = 0; i < layer.output.h*layer.output.w*layer.output.c; ++i){
layer.output.data[i] = convolution_activation(layer.output.data[i]);
}
}
void backpropagate_convolutional_layer(image input, convolutional_layer layer)
{
int i;
zero_image(input);
for(i = 0; i < layer.n; ++i){
back_convolve(input, layer.kernels[i], layer.stride, i, layer.output);
}
}
void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer)
{
int i,j;
for(i = 0; i < layer.n; ++i){
rotate_image(layer.kernels[i]);
}
zero_image(input);
upsample_image(layer.output, layer.stride, layer.upsampled);
for(j = 0; j < input.c; ++j){
for(i = 0; i < layer.n; ++i){
two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, input, j);
}
}
for(i = 0; i < layer.n; ++i){
rotate_image(layer.kernels[i]);
}
}
void learn_convolutional_layer(image input, convolutional_layer layer)
{
int i;
for(i = 0; i < layer.n; ++i){
kernel_update(input, layer.kernel_updates[i], layer.stride, i, layer.output);
}
image old_input = copy_image(input);
backpropagate_convolutional_layer(input, layer);
for(i = 0; i < input.h*input.w*input.c; ++i){
input.data[i] *= convolution_gradient(old_input.data[i]);
}
free_image(old_input);
}
void update_convolutional_layer(convolutional_layer layer, double step)
{
int i,j;
for(i = 0; i < layer.n; ++i){
int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c;
for(j = 0; j < pixels; ++j){
layer.kernels[i].data[j] += step*layer.kernel_updates[i].data[j];
}
zero_image(layer.kernel_updates[i]);
}
}