mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
2.6 KiB
95 lines
2.6 KiB
#include "convolutional_layer.h" |
|
|
|
double convolution_activation(double x) |
|
{ |
|
return x*(x>0); |
|
} |
|
|
|
double convolution_gradient(double x) |
|
{ |
|
return (x>=0); |
|
} |
|
|
|
convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride) |
|
{ |
|
int i; |
|
convolutional_layer layer; |
|
layer.n = n; |
|
layer.stride = stride; |
|
layer.kernels = calloc(n, sizeof(image)); |
|
layer.kernel_updates = calloc(n, sizeof(image)); |
|
for(i = 0; i < n; ++i){ |
|
layer.kernels[i] = make_random_kernel(size, c); |
|
layer.kernel_updates[i] = make_random_kernel(size, c); |
|
} |
|
layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n); |
|
layer.upsampled = make_image(h,w,n); |
|
return layer; |
|
} |
|
|
|
void run_convolutional_layer(const image input, const convolutional_layer layer) |
|
{ |
|
int i; |
|
for(i = 0; i < layer.n; ++i){ |
|
convolve(input, layer.kernels[i], layer.stride, i, layer.output); |
|
} |
|
for(i = 0; i < layer.output.h*layer.output.w*layer.output.c; ++i){ |
|
layer.output.data[i] = convolution_activation(layer.output.data[i]); |
|
} |
|
} |
|
|
|
void backpropagate_convolutional_layer(image input, convolutional_layer layer) |
|
{ |
|
int i; |
|
zero_image(input); |
|
for(i = 0; i < layer.n; ++i){ |
|
back_convolve(input, layer.kernels[i], layer.stride, i, layer.output); |
|
} |
|
} |
|
|
|
void backpropagate_convolutional_layer_convolve(image input, convolutional_layer layer) |
|
{ |
|
int i,j; |
|
for(i = 0; i < layer.n; ++i){ |
|
rotate_image(layer.kernels[i]); |
|
} |
|
|
|
zero_image(input); |
|
upsample_image(layer.output, layer.stride, layer.upsampled); |
|
for(j = 0; j < input.c; ++j){ |
|
for(i = 0; i < layer.n; ++i){ |
|
two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, input, j); |
|
} |
|
} |
|
|
|
for(i = 0; i < layer.n; ++i){ |
|
rotate_image(layer.kernels[i]); |
|
} |
|
} |
|
|
|
void learn_convolutional_layer(image input, convolutional_layer layer) |
|
{ |
|
int i; |
|
for(i = 0; i < layer.n; ++i){ |
|
kernel_update(input, layer.kernel_updates[i], layer.stride, i, layer.output); |
|
} |
|
image old_input = copy_image(input); |
|
backpropagate_convolutional_layer(input, layer); |
|
for(i = 0; i < input.h*input.w*input.c; ++i){ |
|
input.data[i] *= convolution_gradient(old_input.data[i]); |
|
} |
|
free_image(old_input); |
|
} |
|
|
|
void update_convolutional_layer(convolutional_layer layer, double step) |
|
{ |
|
int i,j; |
|
for(i = 0; i < layer.n; ++i){ |
|
int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; |
|
for(j = 0; j < pixels; ++j){ |
|
layer.kernels[i].data[j] += step*layer.kernel_updates[i].data[j]; |
|
} |
|
zero_image(layer.kernel_updates[i]); |
|
} |
|
} |
|
|
|
|