mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
5.7 KiB
136 lines
5.7 KiB
#include <cuda_runtime.h> |
|
#include <curand.h> |
|
#include <cublas_v2.h> |
|
|
|
#include "col2im.h" |
|
#include "dark_cuda.h" |
|
|
|
// src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu |
|
// You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE |
|
|
|
__global__ void col2im_gpu_kernel(const int n, const float* data_col, |
|
const int height, const int width, const int ksize, |
|
const int pad, |
|
const int stride, |
|
const int height_col, const int width_col, |
|
float *data_im) { |
|
int index = blockIdx.x*blockDim.x+threadIdx.x; |
|
for(; index < n; index += blockDim.x*gridDim.x){ |
|
float val = 0; |
|
int w = index % width + pad; |
|
int h = (index / width) % height + pad; |
|
int c = index / (width * height); |
|
// compute the start and end of the output |
|
int w_col_start = (w < ksize) ? 0 : (w - ksize) / stride + 1; |
|
int w_col_end = min(w / stride + 1, width_col); |
|
int h_col_start = (h < ksize) ? 0 : (h - ksize) / stride + 1; |
|
int h_col_end = min(h / stride + 1, height_col); |
|
// equivalent implementation |
|
int offset = |
|
(c * ksize * ksize + h * ksize + w) * height_col * width_col; |
|
int coeff_h_col = (1 - stride * ksize * height_col) * width_col; |
|
int coeff_w_col = (1 - stride * height_col * width_col); |
|
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { |
|
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { |
|
val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col]; |
|
} |
|
} |
|
data_im[index] += val; |
|
} |
|
} |
|
|
|
void col2im_ongpu(float *data_col, |
|
int channels, int height, int width, |
|
int ksize, int stride, int pad, float *data_im){ |
|
// We are going to launch channels * height_col * width_col kernels, each |
|
// kernel responsible for copying a single-channel grid. |
|
int height_col = (height + 2 * pad - ksize) / stride + 1; |
|
int width_col = (width + 2 * pad - ksize) / stride + 1; |
|
int num_kernels = channels * height * width; |
|
col2im_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK, |
|
BLOCK, 0, get_cuda_stream() >>>( |
|
num_kernels, data_col, height, width, ksize, pad, |
|
stride, height_col, |
|
width_col, data_im); |
|
|
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |
|
// ----------------------------------------- |
|
|
|
// CUDA: use 512 threads per block |
|
const int CAFFE_CUDA_NUM_THREADS = 512; |
|
|
|
// CUDA: number of blocks for threads. |
|
inline int CAFFE_GET_BLOCKS(const int N) { |
|
return (N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS; |
|
} |
|
|
|
// CUDA: grid stride looping |
|
#define CUDA_KERNEL_LOOP(i, n) \ |
|
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ |
|
i < (n); \ |
|
i += blockDim.x * gridDim.x) |
|
|
|
// https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu |
|
__global__ void col2im_gpu_kernel_ext(const int n, const float* data_col, |
|
const int height, const int width, const int channels, |
|
const int kernel_h, const int kernel_w, |
|
const int pad_h, const int pad_w, |
|
const int stride_h, const int stride_w, |
|
const int dilation_h, const int dilation_w, |
|
const int height_col, const int width_col, |
|
float* data_im) { |
|
CUDA_KERNEL_LOOP(index, n) { |
|
float val = 0; |
|
const int w_im = index % width + pad_w; |
|
const int h_im = (index / width) % height + pad_h; |
|
const int c_im = index / (width * height); |
|
int kernel_extent_w = (kernel_w - 1) * dilation_w + 1; |
|
int kernel_extent_h = (kernel_h - 1) * dilation_h + 1; |
|
// compute the start and end of the output |
|
const int w_col_start = |
|
(w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1; |
|
const int w_col_end = min(w_im / stride_w + 1, width_col); |
|
const int h_col_start = |
|
(h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1; |
|
const int h_col_end = min(h_im / stride_h + 1, height_col); |
|
// TODO: use LCM of stride and dilation to avoid unnecessary loops |
|
for (int h_col = h_col_start; h_col < h_col_end; h_col += 1) { |
|
for (int w_col = w_col_start; w_col < w_col_end; w_col += 1) { |
|
int h_k = (h_im - h_col * stride_h); |
|
int w_k = (w_im - w_col * stride_w); |
|
if (h_k % dilation_h == 0 && w_k % dilation_w == 0) { |
|
h_k /= dilation_h; |
|
w_k /= dilation_w; |
|
int data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) * |
|
height_col + h_col) * width_col + w_col; |
|
val += data_col[data_col_index]; |
|
} |
|
} |
|
} |
|
data_im[index] = val; |
|
} |
|
} |
|
|
|
void col2im_gpu_ext(const float* data_col, const int channels, |
|
const int height, const int width, const int kernel_h, const int kernel_w, |
|
const int pad_h, const int pad_w, const int stride_h, |
|
const int stride_w, const int dilation_h, const int dilation_w, |
|
float* data_im) |
|
{ |
|
int height_col = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / |
|
stride_h + 1; |
|
int width_col = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / |
|
stride_w + 1; |
|
int num_kernels = channels * height * width; |
|
// To avoid involving atomic operations, we will launch one kernel per |
|
// bottom dimension, and then in the kernel add up the top dimensions. |
|
// NOLINT_NEXT_LINE(whitespace/operators) |
|
col2im_gpu_kernel_ext<< <CAFFE_GET_BLOCKS(num_kernels), |
|
CAFFE_CUDA_NUM_THREADS >> >( |
|
num_kernels, data_col, height, width, channels, kernel_h, kernel_w, |
|
pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, |
|
height_col, width_col, data_im); |
|
|
|
CHECK_CUDA(cudaPeekAtLastError()); |
|
} |