mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
289 lines
9.8 KiB
289 lines
9.8 KiB
#include "rnn_layer.h" |
|
#include "connected_layer.h" |
|
#include "utils.h" |
|
#include "dark_cuda.h" |
|
#include "blas.h" |
|
#include "gemm.h" |
|
|
|
#include <math.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
static void increment_layer(layer *l, int steps) |
|
{ |
|
int num = l->outputs*l->batch*steps; |
|
l->output += num; |
|
l->delta += num; |
|
l->x += num; |
|
l->x_norm += num; |
|
|
|
#ifdef GPU |
|
l->output_gpu += num; |
|
l->delta_gpu += num; |
|
l->x_gpu += num; |
|
l->x_norm_gpu += num; |
|
#endif |
|
} |
|
|
|
layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log) |
|
{ |
|
fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs); |
|
batch = batch / steps; |
|
layer l = { (LAYER_TYPE)0 }; |
|
l.batch = batch; |
|
l.type = RNN; |
|
l.steps = steps; |
|
l.hidden = hidden; |
|
l.inputs = inputs; |
|
l.out_w = 1; |
|
l.out_h = 1; |
|
l.out_c = outputs; |
|
|
|
l.state = (float*)xcalloc(batch * hidden * (steps + 1), sizeof(float)); |
|
|
|
l.input_layer = (layer*)xcalloc(1, sizeof(layer)); |
|
fprintf(stderr, "\t\t"); |
|
*(l.input_layer) = make_connected_layer(batch, steps, inputs, hidden, activation, batch_normalize); |
|
l.input_layer->batch = batch; |
|
if (l.workspace_size < l.input_layer->workspace_size) l.workspace_size = l.input_layer->workspace_size; |
|
|
|
l.self_layer = (layer*)xcalloc(1, sizeof(layer)); |
|
fprintf(stderr, "\t\t"); |
|
*(l.self_layer) = make_connected_layer(batch, steps, hidden, hidden, (log==2)?LOGGY:(log==1?LOGISTIC:activation), batch_normalize); |
|
l.self_layer->batch = batch; |
|
if (l.workspace_size < l.self_layer->workspace_size) l.workspace_size = l.self_layer->workspace_size; |
|
|
|
l.output_layer = (layer*)xcalloc(1, sizeof(layer)); |
|
fprintf(stderr, "\t\t"); |
|
*(l.output_layer) = make_connected_layer(batch, steps, hidden, outputs, activation, batch_normalize); |
|
l.output_layer->batch = batch; |
|
if (l.workspace_size < l.output_layer->workspace_size) l.workspace_size = l.output_layer->workspace_size; |
|
|
|
l.outputs = outputs; |
|
l.output = l.output_layer->output; |
|
l.delta = l.output_layer->delta; |
|
|
|
l.forward = forward_rnn_layer; |
|
l.backward = backward_rnn_layer; |
|
l.update = update_rnn_layer; |
|
#ifdef GPU |
|
l.forward_gpu = forward_rnn_layer_gpu; |
|
l.backward_gpu = backward_rnn_layer_gpu; |
|
l.update_gpu = update_rnn_layer_gpu; |
|
l.state_gpu = cuda_make_array(l.state, batch*hidden*(steps+1)); |
|
l.output_gpu = l.output_layer->output_gpu; |
|
l.delta_gpu = l.output_layer->delta_gpu; |
|
#endif |
|
|
|
return l; |
|
} |
|
|
|
void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay) |
|
{ |
|
update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay); |
|
update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay); |
|
update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay); |
|
} |
|
|
|
void forward_rnn_layer(layer l, network_state state) |
|
{ |
|
network_state s = {0}; |
|
s.train = state.train; |
|
s.workspace = state.workspace; |
|
int i; |
|
layer input_layer = *(l.input_layer); |
|
layer self_layer = *(l.self_layer); |
|
layer output_layer = *(l.output_layer); |
|
|
|
fill_cpu(l.outputs * l.batch * l.steps, 0, output_layer.delta, 1); |
|
fill_cpu(l.hidden * l.batch * l.steps, 0, self_layer.delta, 1); |
|
fill_cpu(l.hidden * l.batch * l.steps, 0, input_layer.delta, 1); |
|
if(state.train) fill_cpu(l.hidden * l.batch, 0, l.state, 1); |
|
|
|
for (i = 0; i < l.steps; ++i) { |
|
|
|
s.input = state.input; |
|
forward_connected_layer(input_layer, s); |
|
|
|
s.input = l.state; |
|
forward_connected_layer(self_layer, s); |
|
|
|
float *old_state = l.state; |
|
if(state.train) l.state += l.hidden*l.batch; |
|
if(l.shortcut){ |
|
copy_cpu(l.hidden * l.batch, old_state, 1, l.state, 1); |
|
}else{ |
|
fill_cpu(l.hidden * l.batch, 0, l.state, 1); |
|
} |
|
axpy_cpu(l.hidden * l.batch, 1, input_layer.output, 1, l.state, 1); |
|
axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); |
|
|
|
s.input = l.state; |
|
forward_connected_layer(output_layer, s); |
|
|
|
state.input += l.inputs*l.batch; |
|
increment_layer(&input_layer, 1); |
|
increment_layer(&self_layer, 1); |
|
increment_layer(&output_layer, 1); |
|
} |
|
} |
|
|
|
void backward_rnn_layer(layer l, network_state state) |
|
{ |
|
network_state s = {0}; |
|
s.train = state.train; |
|
s.workspace = state.workspace; |
|
int i; |
|
layer input_layer = *(l.input_layer); |
|
layer self_layer = *(l.self_layer); |
|
layer output_layer = *(l.output_layer); |
|
|
|
increment_layer(&input_layer, l.steps-1); |
|
increment_layer(&self_layer, l.steps-1); |
|
increment_layer(&output_layer, l.steps-1); |
|
|
|
l.state += l.hidden*l.batch*l.steps; |
|
for (i = l.steps-1; i >= 0; --i) { |
|
copy_cpu(l.hidden * l.batch, input_layer.output, 1, l.state, 1); |
|
axpy_cpu(l.hidden * l.batch, 1, self_layer.output, 1, l.state, 1); |
|
|
|
s.input = l.state; |
|
s.delta = self_layer.delta; |
|
backward_connected_layer(output_layer, s); |
|
|
|
l.state -= l.hidden*l.batch; |
|
/* |
|
if(i > 0){ |
|
copy_cpu(l.hidden * l.batch, input_layer.output - l.hidden*l.batch, 1, l.state, 1); |
|
axpy_cpu(l.hidden * l.batch, 1, self_layer.output - l.hidden*l.batch, 1, l.state, 1); |
|
}else{ |
|
fill_cpu(l.hidden * l.batch, 0, l.state, 1); |
|
} |
|
*/ |
|
|
|
s.input = l.state; |
|
s.delta = self_layer.delta - l.hidden*l.batch; |
|
if (i == 0) s.delta = 0; |
|
backward_connected_layer(self_layer, s); |
|
|
|
copy_cpu(l.hidden*l.batch, self_layer.delta, 1, input_layer.delta, 1); |
|
if (i > 0 && l.shortcut) axpy_cpu(l.hidden*l.batch, 1, self_layer.delta, 1, self_layer.delta - l.hidden*l.batch, 1); |
|
s.input = state.input + i*l.inputs*l.batch; |
|
if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; |
|
else s.delta = 0; |
|
backward_connected_layer(input_layer, s); |
|
|
|
increment_layer(&input_layer, -1); |
|
increment_layer(&self_layer, -1); |
|
increment_layer(&output_layer, -1); |
|
} |
|
} |
|
|
|
#ifdef GPU |
|
|
|
void pull_rnn_layer(layer l) |
|
{ |
|
pull_connected_layer(*(l.input_layer)); |
|
pull_connected_layer(*(l.self_layer)); |
|
pull_connected_layer(*(l.output_layer)); |
|
} |
|
|
|
void push_rnn_layer(layer l) |
|
{ |
|
push_connected_layer(*(l.input_layer)); |
|
push_connected_layer(*(l.self_layer)); |
|
push_connected_layer(*(l.output_layer)); |
|
} |
|
|
|
void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) |
|
{ |
|
update_connected_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay, loss_scale); |
|
update_connected_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay, loss_scale); |
|
update_connected_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay, loss_scale); |
|
} |
|
|
|
void forward_rnn_layer_gpu(layer l, network_state state) |
|
{ |
|
network_state s = {0}; |
|
s.train = state.train; |
|
s.workspace = state.workspace; |
|
int i; |
|
layer input_layer = *(l.input_layer); |
|
layer self_layer = *(l.self_layer); |
|
layer output_layer = *(l.output_layer); |
|
|
|
fill_ongpu(l.outputs * l.batch * l.steps, 0, output_layer.delta_gpu, 1); |
|
fill_ongpu(l.hidden * l.batch * l.steps, 0, self_layer.delta_gpu, 1); |
|
fill_ongpu(l.hidden * l.batch * l.steps, 0, input_layer.delta_gpu, 1); |
|
if(state.train) fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); |
|
|
|
for (i = 0; i < l.steps; ++i) { |
|
|
|
s.input = state.input; |
|
forward_connected_layer_gpu(input_layer, s); |
|
|
|
s.input = l.state_gpu; |
|
forward_connected_layer_gpu(self_layer, s); |
|
|
|
float *old_state = l.state_gpu; |
|
if(state.train) l.state_gpu += l.hidden*l.batch; |
|
if(l.shortcut){ |
|
copy_ongpu(l.hidden * l.batch, old_state, 1, l.state_gpu, 1); |
|
}else{ |
|
fill_ongpu(l.hidden * l.batch, 0, l.state_gpu, 1); |
|
} |
|
axpy_ongpu(l.hidden * l.batch, 1, input_layer.output_gpu, 1, l.state_gpu, 1); |
|
axpy_ongpu(l.hidden * l.batch, 1, self_layer.output_gpu, 1, l.state_gpu, 1); |
|
|
|
s.input = l.state_gpu; |
|
forward_connected_layer_gpu(output_layer, s); |
|
|
|
state.input += l.inputs*l.batch; |
|
increment_layer(&input_layer, 1); |
|
increment_layer(&self_layer, 1); |
|
increment_layer(&output_layer, 1); |
|
} |
|
} |
|
|
|
void backward_rnn_layer_gpu(layer l, network_state state) |
|
{ |
|
network_state s = {0}; |
|
s.train = state.train; |
|
s.workspace = state.workspace; |
|
int i; |
|
layer input_layer = *(l.input_layer); |
|
layer self_layer = *(l.self_layer); |
|
layer output_layer = *(l.output_layer); |
|
increment_layer(&input_layer, l.steps - 1); |
|
increment_layer(&self_layer, l.steps - 1); |
|
increment_layer(&output_layer, l.steps - 1); |
|
l.state_gpu += l.hidden*l.batch*l.steps; |
|
for (i = l.steps-1; i >= 0; --i) { |
|
|
|
s.input = l.state_gpu; |
|
s.delta = self_layer.delta_gpu; |
|
backward_connected_layer_gpu(output_layer, s); |
|
|
|
l.state_gpu -= l.hidden*l.batch; |
|
|
|
copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); // the same delta for Input and Self layers |
|
|
|
s.input = l.state_gpu; |
|
s.delta = self_layer.delta_gpu - l.hidden*l.batch; |
|
if (i == 0) s.delta = 0; |
|
backward_connected_layer_gpu(self_layer, s); |
|
|
|
//copy_ongpu(l.hidden*l.batch, self_layer.delta_gpu, 1, input_layer.delta_gpu, 1); |
|
if (i > 0 && l.shortcut) axpy_ongpu(l.hidden*l.batch, 1, self_layer.delta_gpu, 1, self_layer.delta_gpu - l.hidden*l.batch, 1); |
|
s.input = state.input + i*l.inputs*l.batch; |
|
if(state.delta) s.delta = state.delta + i*l.inputs*l.batch; |
|
else s.delta = 0; |
|
backward_connected_layer_gpu(input_layer, s); |
|
|
|
increment_layer(&input_layer, -1); |
|
increment_layer(&self_layer, -1); |
|
increment_layer(&output_layer, -1); |
|
} |
|
} |
|
#endif
|
|
|