You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

150 lines
4.9 KiB

#include "scale_channels_layer.h"
#include "utils.h"
#include "dark_cuda.h"
#include "blas.h"
#include <stdio.h>
#include <assert.h>
layer make_scale_channels_layer(int batch, int index, int w, int h, int c, int w2, int h2, int c2, int scale_wh)
{
fprintf(stderr,"scale Layer: %d\n", index);
layer l = { (LAYER_TYPE)0 };
l.type = SCALE_CHANNELS;
l.batch = batch;
l.scale_wh = scale_wh;
l.w = w;
l.h = h;
l.c = c;
if (!l.scale_wh) assert(w == 1 && h == 1);
else assert(c == 1);
l.out_w = w2;
l.out_h = h2;
l.out_c = c2;
if (!l.scale_wh) assert(l.out_c == l.c);
else assert(l.out_w == l.w && l.out_h == l.h);
l.outputs = l.out_w*l.out_h*l.out_c;
l.inputs = l.outputs;
l.index = index;
l.delta = (float*)xcalloc(l.outputs * batch, sizeof(float));
l.output = (float*)xcalloc(l.outputs * batch, sizeof(float));
l.forward = forward_scale_channels_layer;
l.backward = backward_scale_channels_layer;
#ifdef GPU
l.forward_gpu = forward_scale_channels_layer_gpu;
l.backward_gpu = backward_scale_channels_layer_gpu;
l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch);
l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
#endif
return l;
}
void resize_scale_channels_layer(layer *l, network *net)
{
layer first = net->layers[l->index];
l->out_w = first.out_w;
l->out_h = first.out_h;
l->outputs = l->out_w*l->out_h*l->out_c;
l->inputs = l->outputs;
l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float));
l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float));
#ifdef GPU
cuda_free(l->output_gpu);
cuda_free(l->delta_gpu);
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
#endif
}
void forward_scale_channels_layer(const layer l, network_state state)
{
int size = l.batch * l.out_c * l.out_w * l.out_h;
int channel_size = l.out_w * l.out_h;
int batch_size = l.out_c * l.out_w * l.out_h;
float *from_output = state.net.layers[l.index].output;
if (l.scale_wh) {
int i;
#pragma omp parallel for
for (i = 0; i < size; ++i) {
int input_index = i % channel_size + (i / batch_size)*channel_size;
l.output[i] = state.input[input_index] * from_output[i];
}
}
else {
int i;
#pragma omp parallel for
for (i = 0; i < size; ++i) {
l.output[i] = state.input[i / channel_size] * from_output[i];
}
}
activate_array(l.output, l.outputs*l.batch, l.activation);
}
void backward_scale_channels_layer(const layer l, network_state state)
{
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
//axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1);
//scale_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta);
int size = l.batch * l.out_c * l.out_w * l.out_h;
int channel_size = l.out_w * l.out_h;
int batch_size = l.out_c * l.out_w * l.out_h;
float *from_output = state.net.layers[l.index].output;
float *from_delta = state.net.layers[l.index].delta;
if (l.scale_wh) {
int i;
#pragma omp parallel for
for (i = 0; i < size; ++i) {
int input_index = i % channel_size + (i / batch_size)*channel_size;
state.delta[input_index] += l.delta[i] * from_output[i];// / l.out_c; // l.delta * from (should be divided by l.out_c?)
from_delta[i] += state.input[input_index] * l.delta[i]; // input * l.delta
}
}
else {
int i;
#pragma omp parallel for
for (i = 0; i < size; ++i) {
state.delta[i / channel_size] += l.delta[i] * from_output[i];// / channel_size; // l.delta * from (should be divided by channel_size?)
from_delta[i] += state.input[i / channel_size] * l.delta[i]; // input * l.delta
}
}
}
#ifdef GPU
void forward_scale_channels_layer_gpu(const layer l, network_state state)
{
int size = l.batch * l.out_c * l.out_w * l.out_h;
int channel_size = l.out_w * l.out_h;
int batch_size = l.out_c * l.out_w * l.out_h;
scale_channels_gpu(state.net.layers[l.index].output_gpu, size, channel_size, batch_size, l.scale_wh, state.input, l.output_gpu);
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
}
void backward_scale_channels_layer_gpu(const layer l, network_state state)
{
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
int size = l.batch * l.out_c * l.out_w * l.out_h;
int channel_size = l.out_w * l.out_h;
int batch_size = l.out_c * l.out_w * l.out_h;
float *from_output = state.net.layers[l.index].output_gpu;
float *from_delta = state.net.layers[l.index].delta_gpu;
backward_scale_channels_gpu(l.delta_gpu, size, channel_size, batch_size, l.scale_wh, state.input, from_delta, from_output, state.delta);
}
#endif