mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1626 lines
48 KiB
1626 lines
48 KiB
#include "data.h" |
|
#include "utils.h" |
|
#include "image.h" |
|
#include "dark_cuda.h" |
|
|
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#define NUMCHARS 37 |
|
|
|
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; |
|
|
|
list *get_paths(char *filename) |
|
{ |
|
char *path; |
|
FILE *file = fopen(filename, "r"); |
|
if(!file) file_error(filename); |
|
list *lines = make_list(); |
|
while((path=fgetl(file))){ |
|
list_insert(lines, path); |
|
} |
|
fclose(file); |
|
return lines; |
|
} |
|
|
|
/* |
|
char **get_random_paths_indexes(char **paths, int n, int m, int *indexes) |
|
{ |
|
char **random_paths = calloc(n, sizeof(char*)); |
|
int i; |
|
pthread_mutex_lock(&mutex); |
|
for(i = 0; i < n; ++i){ |
|
int index = random_gen()%m; |
|
indexes[i] = index; |
|
random_paths[i] = paths[index]; |
|
if(i == 0) printf("%s\n", paths[index]); |
|
} |
|
pthread_mutex_unlock(&mutex); |
|
return random_paths; |
|
} |
|
*/ |
|
|
|
char **get_sequential_paths(char **paths, int n, int m, int mini_batch, int augment_speed) |
|
{ |
|
int speed = rand_int(1, augment_speed); |
|
if (speed < 1) speed = 1; |
|
char** sequentia_paths = (char**)calloc(n, sizeof(char*)); |
|
int i; |
|
pthread_mutex_lock(&mutex); |
|
//printf("n = %d, mini_batch = %d \n", n, mini_batch); |
|
unsigned int *start_time_indexes = (unsigned int *)calloc(mini_batch, sizeof(unsigned int)); |
|
for (i = 0; i < mini_batch; ++i) { |
|
start_time_indexes[i] = random_gen() % m; |
|
//printf(" start_time_indexes[i] = %u, ", start_time_indexes[i]); |
|
} |
|
|
|
for (i = 0; i < n; ++i) { |
|
do { |
|
int time_line_index = i % mini_batch; |
|
unsigned int index = start_time_indexes[time_line_index] % m; |
|
start_time_indexes[time_line_index] += speed; |
|
|
|
//int index = random_gen() % m; |
|
sequentia_paths[i] = paths[index]; |
|
//if(i == 0) printf("%s\n", paths[index]); |
|
//printf(" index = %u - grp: %s \n", index, paths[index]); |
|
if (strlen(sequentia_paths[i]) <= 4) printf(" Very small path to the image: %s \n", sequentia_paths[i]); |
|
} while (strlen(sequentia_paths[i]) == 0); |
|
} |
|
free(start_time_indexes); |
|
pthread_mutex_unlock(&mutex); |
|
return sequentia_paths; |
|
} |
|
|
|
char **get_random_paths(char **paths, int n, int m) |
|
{ |
|
char** random_paths = (char**)calloc(n, sizeof(char*)); |
|
int i; |
|
pthread_mutex_lock(&mutex); |
|
//printf("n = %d \n", n); |
|
for(i = 0; i < n; ++i){ |
|
do { |
|
int index = random_gen() % m; |
|
random_paths[i] = paths[index]; |
|
//if(i == 0) printf("%s\n", paths[index]); |
|
//printf("grp: %s\n", paths[index]); |
|
if (strlen(random_paths[i]) <= 4) printf(" Very small path to the image: %s \n", random_paths[i]); |
|
} while (strlen(random_paths[i]) == 0); |
|
} |
|
pthread_mutex_unlock(&mutex); |
|
return random_paths; |
|
} |
|
|
|
char **find_replace_paths(char **paths, int n, char *find, char *replace) |
|
{ |
|
char** replace_paths = (char**)calloc(n, sizeof(char*)); |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
char replaced[4096]; |
|
find_replace(paths[i], find, replace, replaced); |
|
replace_paths[i] = copy_string(replaced); |
|
} |
|
return replace_paths; |
|
} |
|
|
|
matrix load_image_paths_gray(char **paths, int n, int w, int h) |
|
{ |
|
int i; |
|
matrix X; |
|
X.rows = n; |
|
X.vals = (float**)calloc(X.rows, sizeof(float*)); |
|
X.cols = 0; |
|
|
|
for(i = 0; i < n; ++i){ |
|
image im = load_image(paths[i], w, h, 3); |
|
|
|
image gray = grayscale_image(im); |
|
free_image(im); |
|
im = gray; |
|
|
|
X.vals[i] = im.data; |
|
X.cols = im.h*im.w*im.c; |
|
} |
|
return X; |
|
} |
|
|
|
matrix load_image_paths(char **paths, int n, int w, int h) |
|
{ |
|
int i; |
|
matrix X; |
|
X.rows = n; |
|
X.vals = (float**)calloc(X.rows, sizeof(float*)); |
|
X.cols = 0; |
|
|
|
for(i = 0; i < n; ++i){ |
|
image im = load_image_color(paths[i], w, h); |
|
X.vals[i] = im.data; |
|
X.cols = im.h*im.w*im.c; |
|
} |
|
return X; |
|
} |
|
|
|
matrix load_image_augment_paths(char **paths, int n, int use_flip, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) |
|
{ |
|
int i; |
|
matrix X; |
|
X.rows = n; |
|
X.vals = (float**)calloc(X.rows, sizeof(float*)); |
|
X.cols = 0; |
|
|
|
for(i = 0; i < n; ++i){ |
|
image im = load_image_color(paths[i], 0, 0); |
|
image crop = random_augment_image(im, angle, aspect, min, max, size); |
|
int flip = use_flip ? random_gen() % 2 : 0; |
|
if (flip) |
|
flip_image(crop); |
|
random_distort_image(crop, hue, saturation, exposure); |
|
|
|
/* |
|
show_image(im, "orig"); |
|
show_image(crop, "crop"); |
|
cvWaitKey(0); |
|
*/ |
|
free_image(im); |
|
X.vals[i] = crop.data; |
|
X.cols = crop.h*crop.w*crop.c; |
|
} |
|
return X; |
|
} |
|
|
|
extern int check_mistakes; |
|
|
|
box_label *read_boxes(char *filename, int *n) |
|
{ |
|
box_label* boxes = (box_label*)calloc(1, sizeof(box_label)); |
|
FILE *file = fopen(filename, "r"); |
|
if (!file) { |
|
printf("Can't open label file. (This can be normal only if you use MSCOCO): %s \n", filename); |
|
//file_error(filename); |
|
FILE* fw = fopen("bad.list", "a"); |
|
fwrite(filename, sizeof(char), strlen(filename), fw); |
|
char *new_line = "\n"; |
|
fwrite(new_line, sizeof(char), strlen(new_line), fw); |
|
fclose(fw); |
|
if (check_mistakes) getchar(); |
|
|
|
*n = 0; |
|
return boxes; |
|
} |
|
float x, y, h, w; |
|
int id; |
|
int count = 0; |
|
while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){ |
|
boxes = (box_label*)realloc(boxes, (count + 1) * sizeof(box_label)); |
|
boxes[count].id = id; |
|
boxes[count].x = x; |
|
boxes[count].y = y; |
|
boxes[count].h = h; |
|
boxes[count].w = w; |
|
boxes[count].left = x - w/2; |
|
boxes[count].right = x + w/2; |
|
boxes[count].top = y - h/2; |
|
boxes[count].bottom = y + h/2; |
|
++count; |
|
} |
|
fclose(file); |
|
*n = count; |
|
return boxes; |
|
} |
|
|
|
void randomize_boxes(box_label *b, int n) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
box_label swap = b[i]; |
|
int index = random_gen()%n; |
|
b[i] = b[index]; |
|
b[index] = swap; |
|
} |
|
} |
|
|
|
void correct_boxes(box_label *boxes, int n, float dx, float dy, float sx, float sy, int flip) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
if(boxes[i].x == 0 && boxes[i].y == 0) { |
|
boxes[i].x = 999999; |
|
boxes[i].y = 999999; |
|
boxes[i].w = 999999; |
|
boxes[i].h = 999999; |
|
continue; |
|
} |
|
if ((boxes[i].x + boxes[i].w / 2) < 0 || (boxes[i].y + boxes[i].h / 2) < 0 || |
|
(boxes[i].x - boxes[i].w / 2) > 1 || (boxes[i].y - boxes[i].h / 2) > 1) |
|
{ |
|
boxes[i].x = 999999; |
|
boxes[i].y = 999999; |
|
boxes[i].w = 999999; |
|
boxes[i].h = 999999; |
|
continue; |
|
} |
|
boxes[i].left = boxes[i].left * sx - dx; |
|
boxes[i].right = boxes[i].right * sx - dx; |
|
boxes[i].top = boxes[i].top * sy - dy; |
|
boxes[i].bottom = boxes[i].bottom* sy - dy; |
|
|
|
if(flip){ |
|
float swap = boxes[i].left; |
|
boxes[i].left = 1. - boxes[i].right; |
|
boxes[i].right = 1. - swap; |
|
} |
|
|
|
boxes[i].left = constrain(0, 1, boxes[i].left); |
|
boxes[i].right = constrain(0, 1, boxes[i].right); |
|
boxes[i].top = constrain(0, 1, boxes[i].top); |
|
boxes[i].bottom = constrain(0, 1, boxes[i].bottom); |
|
|
|
boxes[i].x = (boxes[i].left+boxes[i].right)/2; |
|
boxes[i].y = (boxes[i].top+boxes[i].bottom)/2; |
|
boxes[i].w = (boxes[i].right - boxes[i].left); |
|
boxes[i].h = (boxes[i].bottom - boxes[i].top); |
|
|
|
boxes[i].w = constrain(0, 1, boxes[i].w); |
|
boxes[i].h = constrain(0, 1, boxes[i].h); |
|
} |
|
} |
|
|
|
void fill_truth_swag(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy) |
|
{ |
|
char labelpath[4096]; |
|
replace_image_to_label(path, labelpath); |
|
|
|
int count = 0; |
|
box_label *boxes = read_boxes(labelpath, &count); |
|
randomize_boxes(boxes, count); |
|
correct_boxes(boxes, count, dx, dy, sx, sy, flip); |
|
float x,y,w,h; |
|
int id; |
|
int i; |
|
|
|
for (i = 0; i < count && i < 30; ++i) { |
|
x = boxes[i].x; |
|
y = boxes[i].y; |
|
w = boxes[i].w; |
|
h = boxes[i].h; |
|
id = boxes[i].id; |
|
|
|
if (w < .0 || h < .0) continue; |
|
|
|
int index = (4+classes) * i; |
|
|
|
truth[index++] = x; |
|
truth[index++] = y; |
|
truth[index++] = w; |
|
truth[index++] = h; |
|
|
|
if (id < classes) truth[index+id] = 1; |
|
} |
|
free(boxes); |
|
} |
|
|
|
void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int flip, float dx, float dy, float sx, float sy) |
|
{ |
|
char labelpath[4096]; |
|
replace_image_to_label(path, labelpath); |
|
|
|
int count = 0; |
|
box_label *boxes = read_boxes(labelpath, &count); |
|
randomize_boxes(boxes, count); |
|
correct_boxes(boxes, count, dx, dy, sx, sy, flip); |
|
float x,y,w,h; |
|
int id; |
|
int i; |
|
|
|
for (i = 0; i < count; ++i) { |
|
x = boxes[i].x; |
|
y = boxes[i].y; |
|
w = boxes[i].w; |
|
h = boxes[i].h; |
|
id = boxes[i].id; |
|
|
|
if (w < .001 || h < .001) continue; |
|
|
|
int col = (int)(x*num_boxes); |
|
int row = (int)(y*num_boxes); |
|
|
|
x = x*num_boxes - col; |
|
y = y*num_boxes - row; |
|
|
|
int index = (col+row*num_boxes)*(5+classes); |
|
if (truth[index]) continue; |
|
truth[index++] = 1; |
|
|
|
if (id < classes) truth[index+id] = 1; |
|
index += classes; |
|
|
|
truth[index++] = x; |
|
truth[index++] = y; |
|
truth[index++] = w; |
|
truth[index++] = h; |
|
} |
|
free(boxes); |
|
} |
|
|
|
void fill_truth_detection(const char *path, int num_boxes, float *truth, int classes, int flip, float dx, float dy, float sx, float sy, |
|
int net_w, int net_h) |
|
{ |
|
char labelpath[4096]; |
|
replace_image_to_label(path, labelpath); |
|
|
|
int count = 0; |
|
int i; |
|
box_label *boxes = read_boxes(labelpath, &count); |
|
float lowest_w = 1.F / net_w; |
|
float lowest_h = 1.F / net_h; |
|
randomize_boxes(boxes, count); |
|
correct_boxes(boxes, count, dx, dy, sx, sy, flip); |
|
if (count > num_boxes) count = num_boxes; |
|
float x, y, w, h; |
|
int id; |
|
int sub = 0; |
|
|
|
for (i = 0; i < count; ++i) { |
|
x = boxes[i].x; |
|
y = boxes[i].y; |
|
w = boxes[i].w; |
|
h = boxes[i].h; |
|
id = boxes[i].id; |
|
|
|
// not detect small objects |
|
//if ((w < 0.001F || h < 0.001F)) continue; |
|
// if truth (box for object) is smaller than 1x1 pix |
|
char buff[256]; |
|
if (id >= classes) { |
|
printf("\n Wrong annotation: class_id = %d. But class_id should be [from 0 to %d] \n", id, (classes-1)); |
|
sprintf(buff, "echo %s \"Wrong annotation: class_id = %d. But class_id should be [from 0 to %d]\" >> bad_label.list", labelpath, id, (classes-1)); |
|
system(buff); |
|
getchar(); |
|
++sub; |
|
continue; |
|
} |
|
if ((w < lowest_w || h < lowest_h)) { |
|
//sprintf(buff, "echo %s \"Very small object: w < lowest_w OR h < lowest_h\" >> bad_label.list", labelpath); |
|
//system(buff); |
|
++sub; |
|
continue; |
|
} |
|
if (x == 999999 || y == 999999) { |
|
printf("\n Wrong annotation: x = 0, y = 0, < 0 or > 1 \n"); |
|
sprintf(buff, "echo %s \"Wrong annotation: x = 0 or y = 0\" >> bad_label.list", labelpath); |
|
system(buff); |
|
++sub; |
|
if (check_mistakes) getchar(); |
|
continue; |
|
} |
|
if (x <= 0 || x > 1 || y <= 0 || y > 1) { |
|
printf("\n Wrong annotation: x = %f, y = %f \n", x, y); |
|
sprintf(buff, "echo %s \"Wrong annotation: x = %f, y = %f\" >> bad_label.list", labelpath, x, y); |
|
system(buff); |
|
++sub; |
|
if (check_mistakes) getchar(); |
|
continue; |
|
} |
|
if (w > 1) { |
|
printf("\n Wrong annotation: w = %f \n", w); |
|
sprintf(buff, "echo %s \"Wrong annotation: w = %f\" >> bad_label.list", labelpath, w); |
|
system(buff); |
|
w = 1; |
|
if (check_mistakes) getchar(); |
|
} |
|
if (h > 1) { |
|
printf("\n Wrong annotation: h = %f \n", h); |
|
sprintf(buff, "echo %s \"Wrong annotation: h = %f\" >> bad_label.list", labelpath, h); |
|
system(buff); |
|
h = 1; |
|
if (check_mistakes) getchar(); |
|
} |
|
if (x == 0) x += lowest_w; |
|
if (y == 0) y += lowest_h; |
|
|
|
truth[(i-sub)*5+0] = x; |
|
truth[(i-sub)*5+1] = y; |
|
truth[(i-sub)*5+2] = w; |
|
truth[(i-sub)*5+3] = h; |
|
truth[(i-sub)*5+4] = id; |
|
} |
|
free(boxes); |
|
} |
|
|
|
|
|
void print_letters(float *pred, int n) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
int index = max_index(pred+i*NUMCHARS, NUMCHARS); |
|
printf("%c", int_to_alphanum(index)); |
|
} |
|
printf("\n"); |
|
} |
|
|
|
void fill_truth_captcha(char *path, int n, float *truth) |
|
{ |
|
char *begin = strrchr(path, '/'); |
|
++begin; |
|
int i; |
|
for(i = 0; i < strlen(begin) && i < n && begin[i] != '.'; ++i){ |
|
int index = alphanum_to_int(begin[i]); |
|
if(index > 35) printf("Bad %c\n", begin[i]); |
|
truth[i*NUMCHARS+index] = 1; |
|
} |
|
for(;i < n; ++i){ |
|
truth[i*NUMCHARS + NUMCHARS-1] = 1; |
|
} |
|
} |
|
|
|
data load_data_captcha(char **paths, int n, int m, int k, int w, int h) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = load_image_paths(paths, n, w, h); |
|
d.y = make_matrix(n, k*NUMCHARS); |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
fill_truth_captcha(paths[i], k, d.y.vals[i]); |
|
} |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
data load_data_captcha_encode(char **paths, int n, int m, int w, int h) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = load_image_paths(paths, n, w, h); |
|
d.X.cols = 17100; |
|
d.y = d.X; |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
void fill_truth(char *path, char **labels, int k, float *truth) |
|
{ |
|
int i; |
|
memset(truth, 0, k*sizeof(float)); |
|
int count = 0; |
|
for(i = 0; i < k; ++i){ |
|
if(strstr(path, labels[i])){ |
|
truth[i] = 1; |
|
++count; |
|
} |
|
} |
|
if(count != 1) printf("Too many or too few labels: %d, %s\n", count, path); |
|
} |
|
|
|
void fill_hierarchy(float *truth, int k, tree *hierarchy) |
|
{ |
|
int j; |
|
for(j = 0; j < k; ++j){ |
|
if(truth[j]){ |
|
int parent = hierarchy->parent[j]; |
|
while(parent >= 0){ |
|
truth[parent] = 1; |
|
parent = hierarchy->parent[parent]; |
|
} |
|
} |
|
} |
|
int i; |
|
int count = 0; |
|
for(j = 0; j < hierarchy->groups; ++j){ |
|
//printf("%d\n", count); |
|
int mask = 1; |
|
for(i = 0; i < hierarchy->group_size[j]; ++i){ |
|
if(truth[count + i]){ |
|
mask = 0; |
|
break; |
|
} |
|
} |
|
if (mask) { |
|
for(i = 0; i < hierarchy->group_size[j]; ++i){ |
|
truth[count + i] = SECRET_NUM; |
|
} |
|
} |
|
count += hierarchy->group_size[j]; |
|
} |
|
} |
|
|
|
matrix load_labels_paths(char **paths, int n, char **labels, int k, tree *hierarchy) |
|
{ |
|
matrix y = make_matrix(n, k); |
|
int i; |
|
for(i = 0; i < n && labels; ++i){ |
|
fill_truth(paths[i], labels, k, y.vals[i]); |
|
if(hierarchy){ |
|
fill_hierarchy(y.vals[i], k, hierarchy); |
|
} |
|
} |
|
return y; |
|
} |
|
|
|
matrix load_tags_paths(char **paths, int n, int k) |
|
{ |
|
matrix y = make_matrix(n, k); |
|
int i; |
|
int count = 0; |
|
for(i = 0; i < n; ++i){ |
|
char label[4096]; |
|
find_replace(paths[i], "imgs", "labels", label); |
|
find_replace(label, "_iconl.jpeg", ".txt", label); |
|
FILE *file = fopen(label, "r"); |
|
if(!file){ |
|
find_replace(label, "labels", "labels2", label); |
|
file = fopen(label, "r"); |
|
if(!file) continue; |
|
} |
|
++count; |
|
int tag; |
|
while(fscanf(file, "%d", &tag) == 1){ |
|
if(tag < k){ |
|
y.vals[i][tag] = 1; |
|
} |
|
} |
|
fclose(file); |
|
} |
|
printf("%d/%d\n", count, n); |
|
return y; |
|
} |
|
|
|
char **get_labels_custom(char *filename, int *size) |
|
{ |
|
list *plist = get_paths(filename); |
|
if(size) *size = plist->size; |
|
char **labels = (char **)list_to_array(plist); |
|
free_list(plist); |
|
return labels; |
|
} |
|
|
|
char **get_labels(char *filename) |
|
{ |
|
return get_labels_custom(filename, NULL); |
|
} |
|
|
|
void free_data(data d) |
|
{ |
|
if(!d.shallow){ |
|
free_matrix(d.X); |
|
free_matrix(d.y); |
|
}else{ |
|
free(d.X.vals); |
|
free(d.y.vals); |
|
} |
|
} |
|
|
|
data load_data_region(int n, char **paths, int m, int w, int h, int size, int classes, float jitter, float hue, float saturation, float exposure) |
|
{ |
|
char **random_paths = get_random_paths(paths, n, m); |
|
int i; |
|
data d = {0}; |
|
d.shallow = 0; |
|
|
|
d.X.rows = n; |
|
d.X.vals = (float**)calloc(d.X.rows, sizeof(float*)); |
|
d.X.cols = h*w*3; |
|
|
|
|
|
int k = size*size*(5+classes); |
|
d.y = make_matrix(n, k); |
|
for(i = 0; i < n; ++i){ |
|
image orig = load_image_color(random_paths[i], 0, 0); |
|
|
|
int oh = orig.h; |
|
int ow = orig.w; |
|
|
|
int dw = (ow*jitter); |
|
int dh = (oh*jitter); |
|
|
|
int pleft = rand_uniform(-dw, dw); |
|
int pright = rand_uniform(-dw, dw); |
|
int ptop = rand_uniform(-dh, dh); |
|
int pbot = rand_uniform(-dh, dh); |
|
|
|
int swidth = ow - pleft - pright; |
|
int sheight = oh - ptop - pbot; |
|
|
|
float sx = (float)swidth / ow; |
|
float sy = (float)sheight / oh; |
|
|
|
int flip = random_gen()%2; |
|
image cropped = crop_image(orig, pleft, ptop, swidth, sheight); |
|
|
|
float dx = ((float)pleft/ow)/sx; |
|
float dy = ((float)ptop /oh)/sy; |
|
|
|
image sized = resize_image(cropped, w, h); |
|
if(flip) flip_image(sized); |
|
random_distort_image(sized, hue, saturation, exposure); |
|
d.X.vals[i] = sized.data; |
|
|
|
fill_truth_region(random_paths[i], d.y.vals[i], classes, size, flip, dx, dy, 1./sx, 1./sy); |
|
|
|
free_image(orig); |
|
free_image(cropped); |
|
} |
|
free(random_paths); |
|
return d; |
|
} |
|
|
|
data load_data_compare(int n, char **paths, int m, int classes, int w, int h) |
|
{ |
|
if(m) paths = get_random_paths(paths, 2*n, m); |
|
int i,j; |
|
data d = {0}; |
|
d.shallow = 0; |
|
|
|
d.X.rows = n; |
|
d.X.vals = (float**)calloc(d.X.rows, sizeof(float*)); |
|
d.X.cols = h*w*6; |
|
|
|
int k = 2*(classes); |
|
d.y = make_matrix(n, k); |
|
for(i = 0; i < n; ++i){ |
|
image im1 = load_image_color(paths[i*2], w, h); |
|
image im2 = load_image_color(paths[i*2+1], w, h); |
|
|
|
d.X.vals[i] = (float*)calloc(d.X.cols, sizeof(float)); |
|
memcpy(d.X.vals[i], im1.data, h*w*3*sizeof(float)); |
|
memcpy(d.X.vals[i] + h*w*3, im2.data, h*w*3*sizeof(float)); |
|
|
|
int id; |
|
float iou; |
|
|
|
char imlabel1[4096]; |
|
char imlabel2[4096]; |
|
find_replace(paths[i*2], "imgs", "labels", imlabel1); |
|
find_replace(imlabel1, "jpg", "txt", imlabel1); |
|
FILE *fp1 = fopen(imlabel1, "r"); |
|
|
|
while(fscanf(fp1, "%d %f", &id, &iou) == 2){ |
|
if (d.y.vals[i][2*id] < iou) d.y.vals[i][2*id] = iou; |
|
} |
|
|
|
find_replace(paths[i*2+1], "imgs", "labels", imlabel2); |
|
find_replace(imlabel2, "jpg", "txt", imlabel2); |
|
FILE *fp2 = fopen(imlabel2, "r"); |
|
|
|
while(fscanf(fp2, "%d %f", &id, &iou) == 2){ |
|
if (d.y.vals[i][2*id + 1] < iou) d.y.vals[i][2*id + 1] = iou; |
|
} |
|
|
|
for (j = 0; j < classes; ++j){ |
|
if (d.y.vals[i][2*j] > .5 && d.y.vals[i][2*j+1] < .5){ |
|
d.y.vals[i][2*j] = 1; |
|
d.y.vals[i][2*j+1] = 0; |
|
} else if (d.y.vals[i][2*j] < .5 && d.y.vals[i][2*j+1] > .5){ |
|
d.y.vals[i][2*j] = 0; |
|
d.y.vals[i][2*j+1] = 1; |
|
} else { |
|
d.y.vals[i][2*j] = SECRET_NUM; |
|
d.y.vals[i][2*j+1] = SECRET_NUM; |
|
} |
|
} |
|
fclose(fp1); |
|
fclose(fp2); |
|
|
|
free_image(im1); |
|
free_image(im2); |
|
} |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
data load_data_swag(char **paths, int n, int classes, float jitter) |
|
{ |
|
int index = random_gen()%n; |
|
char *random_path = paths[index]; |
|
|
|
image orig = load_image_color(random_path, 0, 0); |
|
int h = orig.h; |
|
int w = orig.w; |
|
|
|
data d = {0}; |
|
d.shallow = 0; |
|
d.w = w; |
|
d.h = h; |
|
|
|
d.X.rows = 1; |
|
d.X.vals = (float**)calloc(d.X.rows, sizeof(float*)); |
|
d.X.cols = h*w*3; |
|
|
|
int k = (4+classes)*30; |
|
d.y = make_matrix(1, k); |
|
|
|
int dw = w*jitter; |
|
int dh = h*jitter; |
|
|
|
int pleft = rand_uniform(-dw, dw); |
|
int pright = rand_uniform(-dw, dw); |
|
int ptop = rand_uniform(-dh, dh); |
|
int pbot = rand_uniform(-dh, dh); |
|
|
|
int swidth = w - pleft - pright; |
|
int sheight = h - ptop - pbot; |
|
|
|
float sx = (float)swidth / w; |
|
float sy = (float)sheight / h; |
|
|
|
int flip = random_gen()%2; |
|
image cropped = crop_image(orig, pleft, ptop, swidth, sheight); |
|
|
|
float dx = ((float)pleft/w)/sx; |
|
float dy = ((float)ptop /h)/sy; |
|
|
|
image sized = resize_image(cropped, w, h); |
|
if(flip) flip_image(sized); |
|
d.X.vals[0] = sized.data; |
|
|
|
fill_truth_swag(random_path, d.y.vals[0], classes, flip, dx, dy, 1./sx, 1./sy); |
|
|
|
free_image(orig); |
|
free_image(cropped); |
|
|
|
return d; |
|
} |
|
|
|
static box float_to_box_stride(float *f, int stride) |
|
{ |
|
box b = { 0 }; |
|
b.x = f[0]; |
|
b.y = f[1 * stride]; |
|
b.w = f[2 * stride]; |
|
b.h = f[3 * stride]; |
|
return b; |
|
} |
|
|
|
void blend_truth(float *new_truth, int boxes, float *old_truth) |
|
{ |
|
const int t_size = 4 + 1; |
|
int count_new_truth = 0; |
|
int t; |
|
for (t = 0; t < boxes; ++t) { |
|
float x = new_truth[t*(4 + 1)]; |
|
if (!x) break; |
|
count_new_truth++; |
|
|
|
} |
|
for (t = count_new_truth; t < boxes; ++t) { |
|
float *new_truth_ptr = new_truth + t*t_size; |
|
float *old_truth_ptr = old_truth + (t - count_new_truth)*t_size; |
|
float x = old_truth_ptr[0]; |
|
if (!x) break; |
|
|
|
new_truth_ptr[0] = old_truth_ptr[0]; |
|
new_truth_ptr[1] = old_truth_ptr[1]; |
|
new_truth_ptr[2] = old_truth_ptr[2]; |
|
new_truth_ptr[3] = old_truth_ptr[3]; |
|
new_truth_ptr[4] = old_truth_ptr[4]; |
|
} |
|
//printf("\n was %d bboxes, now %d bboxes \n", count_new_truth, t); |
|
} |
|
|
|
#ifdef OPENCV |
|
|
|
#include "http_stream.h" |
|
|
|
data load_data_detection(int n, char **paths, int m, int w, int h, int c, int boxes, int classes, int use_flip, int use_blur, int use_mixup, |
|
float jitter, float hue, float saturation, float exposure, int mini_batch, int track, int augment_speed, int letter_box, int show_imgs) |
|
{ |
|
const int random_index = random_gen(); |
|
c = c ? c : 3; |
|
char **random_paths; |
|
char **mixup_random_paths = NULL; |
|
if (track) random_paths = get_sequential_paths(paths, n, m, mini_batch, augment_speed); |
|
else random_paths = get_random_paths(paths, n, m); |
|
|
|
int mixup = use_mixup ? random_gen() % 2 : 0; |
|
//printf("\n mixup = %d \n", mixup); |
|
if (mixup) { |
|
if (track) mixup_random_paths = get_sequential_paths(paths, n, m, mini_batch, augment_speed); |
|
else mixup_random_paths = get_random_paths(paths, n, m); |
|
} |
|
int i; |
|
data d = {0}; |
|
d.shallow = 0; |
|
|
|
d.X.rows = n; |
|
d.X.vals = (float**)calloc(d.X.rows, sizeof(float*)); |
|
d.X.cols = h*w*c; |
|
|
|
float r1 = 0, r2 = 0, r3 = 0, r4 = 0, r_scale = 0; |
|
float dhue = 0, dsat = 0, dexp = 0, flip = 0, blur = 0; |
|
int augmentation_calculated = 0; |
|
|
|
d.y = make_matrix(n, 5*boxes); |
|
int i_mixup = 0; |
|
for (i_mixup = 0; i_mixup <= mixup; i_mixup++) { |
|
if (i_mixup) augmentation_calculated = 0; |
|
for (i = 0; i < n; ++i) { |
|
float *truth = (float*)calloc(5 * boxes, sizeof(float)); |
|
const char *filename = (i_mixup) ? mixup_random_paths[i] : random_paths[i]; |
|
|
|
int flag = (c >= 3); |
|
mat_cv *src; |
|
src = load_image_mat_cv(filename, flag); |
|
if (src == NULL) { |
|
if (check_mistakes) getchar(); |
|
continue; |
|
} |
|
|
|
int oh = get_height_mat(src); |
|
int ow = get_width_mat(src); |
|
|
|
int dw = (ow*jitter); |
|
int dh = (oh*jitter); |
|
|
|
if (!augmentation_calculated || !track) |
|
{ |
|
augmentation_calculated = 1; |
|
r1 = random_float(); |
|
r2 = random_float(); |
|
r3 = random_float(); |
|
r4 = random_float(); |
|
|
|
r_scale = random_float(); |
|
|
|
dhue = rand_uniform_strong(-hue, hue); |
|
dsat = rand_scale(saturation); |
|
dexp = rand_scale(exposure); |
|
|
|
flip = use_flip ? random_gen() % 2 : 0; |
|
blur = rand_int(0, 1) ? (use_blur) : 0; |
|
} |
|
|
|
int pleft = rand_precalc_random(-dw, dw, r1); |
|
int pright = rand_precalc_random(-dw, dw, r2); |
|
int ptop = rand_precalc_random(-dh, dh, r3); |
|
int pbot = rand_precalc_random(-dh, dh, r4); |
|
//printf("\n pleft = %d, pright = %d, ptop = %d, pbot = %d, ow = %d, oh = %d \n", pleft, pright, ptop, pbot, ow, oh); |
|
|
|
float scale = rand_precalc_random(.25, 2, r_scale); // unused currently |
|
|
|
if (letter_box) |
|
{ |
|
float img_ar = (float)ow / (float)oh; |
|
float net_ar = (float)w / (float)h; |
|
float result_ar = img_ar / net_ar; |
|
//printf(" ow = %d, oh = %d, w = %d, h = %d, img_ar = %f, net_ar = %f, result_ar = %f \n", ow, oh, w, h, img_ar, net_ar, result_ar); |
|
if (result_ar > 1) // sheight - should be increased |
|
{ |
|
float oh_tmp = ow / net_ar; |
|
float delta_h = (oh_tmp - oh)/2; |
|
ptop = ptop - delta_h; |
|
pbot = pbot - delta_h; |
|
//printf(" result_ar = %f, oh_tmp = %f, delta_h = %d, ptop = %f, pbot = %f \n", result_ar, oh_tmp, delta_h, ptop, pbot); |
|
} |
|
else // swidth - should be increased |
|
{ |
|
float ow_tmp = oh * net_ar; |
|
float delta_w = (ow_tmp - ow)/2; |
|
pleft = pleft - delta_w; |
|
pright = pright - delta_w; |
|
//printf(" result_ar = %f, ow_tmp = %f, delta_w = %d, pleft = %f, pright = %f \n", result_ar, ow_tmp, delta_w, pleft, pright); |
|
} |
|
} |
|
|
|
int swidth = ow - pleft - pright; |
|
int sheight = oh - ptop - pbot; |
|
|
|
float sx = (float)swidth / ow; |
|
float sy = (float)sheight / oh; |
|
|
|
float dx = ((float)pleft / ow) / sx; |
|
float dy = ((float)ptop / oh) / sy; |
|
|
|
|
|
fill_truth_detection(filename, boxes, truth, classes, flip, dx, dy, 1. / sx, 1. / sy, w, h); |
|
|
|
image ai = image_data_augmentation(src, w, h, pleft, ptop, swidth, sheight, flip, dhue, dsat, dexp, |
|
blur, boxes, d.y.vals[i]); |
|
|
|
if (i_mixup) { |
|
image old_img = ai; |
|
old_img.data = d.X.vals[i]; |
|
//show_image(ai, "new"); |
|
//show_image(old_img, "old"); |
|
//wait_until_press_key_cv(); |
|
blend_images_cv(ai, 0.5, old_img, 0.5); |
|
blend_truth(truth, boxes, d.y.vals[i]); |
|
free_image(old_img); |
|
} |
|
|
|
d.X.vals[i] = ai.data; |
|
memcpy(d.y.vals[i], truth, 5*boxes * sizeof(float)); |
|
|
|
if (show_imgs)// && i_mixup) // delete i_mixup |
|
{ |
|
image tmp_ai = copy_image(ai); |
|
char buff[1000]; |
|
sprintf(buff, "aug_%d_%d_%s_%d", random_index, i, basecfg((char*)filename), random_gen()); |
|
int t; |
|
for (t = 0; t < boxes; ++t) { |
|
box b = float_to_box_stride(d.y.vals[i] + t*(4 + 1), 1); |
|
if (!b.x) break; |
|
int left = (b.x - b.w / 2.)*ai.w; |
|
int right = (b.x + b.w / 2.)*ai.w; |
|
int top = (b.y - b.h / 2.)*ai.h; |
|
int bot = (b.y + b.h / 2.)*ai.h; |
|
draw_box_width(tmp_ai, left, top, right, bot, 1, 150, 100, 50); // 3 channels RGB |
|
} |
|
|
|
save_image(tmp_ai, buff); |
|
if (show_imgs == 1) { |
|
show_image(tmp_ai, buff); |
|
wait_until_press_key_cv(); |
|
} |
|
printf("\nYou use flag -show_imgs, so will be saved aug_...jpg images. Click on window and press ESC button \n"); |
|
free_image(tmp_ai); |
|
} |
|
|
|
release_mat(&src); |
|
free(truth); |
|
} |
|
} |
|
free(random_paths); |
|
if(mixup_random_paths) free(mixup_random_paths); |
|
return d; |
|
} |
|
#else // OPENCV |
|
void blend_images(image new_img, float alpha, image old_img, float beta) |
|
{ |
|
int i; |
|
int data_size = new_img.w * new_img.h * new_img.c; |
|
#pragma omp parallel for |
|
for (i = 0; i < data_size; ++i) |
|
new_img.data[i] = new_img.data[i] * alpha + old_img.data[i] * beta; |
|
} |
|
|
|
data load_data_detection(int n, char **paths, int m, int w, int h, int c, int boxes, int classes, int use_flip, int use_blur, int use_mixup, float jitter, |
|
float hue, float saturation, float exposure, int mini_batch, int track, int augment_speed, int letter_box, int show_imgs) |
|
{ |
|
const int random_index = random_gen(); |
|
c = c ? c : 3; |
|
char **random_paths; |
|
char **mixup_random_paths = NULL; |
|
if(track) random_paths = get_sequential_paths(paths, n, m, mini_batch, augment_speed); |
|
else random_paths = get_random_paths(paths, n, m); |
|
|
|
int mixup = use_mixup ? random_gen() % 2 : 0; |
|
//printf("\n mixup = %d \n", mixup); |
|
if (mixup) { |
|
if (track) mixup_random_paths = get_sequential_paths(paths, n, m, mini_batch, augment_speed); |
|
else mixup_random_paths = get_random_paths(paths, n, m); |
|
} |
|
|
|
int i; |
|
data d = { 0 }; |
|
d.shallow = 0; |
|
|
|
d.X.rows = n; |
|
d.X.vals = (float**)calloc(d.X.rows, sizeof(float*)); |
|
d.X.cols = h*w*c; |
|
|
|
float r1 = 0, r2 = 0, r3 = 0, r4 = 0, r_scale; |
|
float dhue = 0, dsat = 0, dexp = 0, flip = 0; |
|
int augmentation_calculated = 0; |
|
|
|
d.y = make_matrix(n, 5 * boxes); |
|
int i_mixup = 0; |
|
for (i_mixup = 0; i_mixup <= mixup; i_mixup++) { |
|
if (i_mixup) augmentation_calculated = 0; |
|
for (i = 0; i < n; ++i) { |
|
float *truth = (float*)calloc(5 * boxes, sizeof(float)); |
|
char *filename = (i_mixup) ? mixup_random_paths[i] : random_paths[i]; |
|
|
|
image orig = load_image(filename, 0, 0, c); |
|
|
|
int oh = orig.h; |
|
int ow = orig.w; |
|
|
|
int dw = (ow*jitter); |
|
int dh = (oh*jitter); |
|
|
|
if (!augmentation_calculated || !track) |
|
{ |
|
augmentation_calculated = 1; |
|
r1 = random_float(); |
|
r2 = random_float(); |
|
r3 = random_float(); |
|
r4 = random_float(); |
|
|
|
r_scale = random_float(); |
|
|
|
dhue = rand_uniform_strong(-hue, hue); |
|
dsat = rand_scale(saturation); |
|
dexp = rand_scale(exposure); |
|
|
|
flip = use_flip ? random_gen() % 2 : 0; |
|
} |
|
|
|
int pleft = rand_precalc_random(-dw, dw, r1); |
|
int pright = rand_precalc_random(-dw, dw, r2); |
|
int ptop = rand_precalc_random(-dh, dh, r3); |
|
int pbot = rand_precalc_random(-dh, dh, r4); |
|
|
|
float scale = rand_precalc_random(.25, 2, r_scale); // unused currently |
|
|
|
if (letter_box) |
|
{ |
|
float img_ar = (float)ow / (float)oh; |
|
float net_ar = (float)w / (float)h; |
|
float result_ar = img_ar / net_ar; |
|
//printf(" ow = %d, oh = %d, w = %d, h = %d, img_ar = %f, net_ar = %f, result_ar = %f \n", ow, oh, w, h, img_ar, net_ar, result_ar); |
|
if (result_ar > 1) // sheight - should be increased |
|
{ |
|
float oh_tmp = ow / net_ar; |
|
float delta_h = (oh_tmp - oh) / 2; |
|
ptop = ptop - delta_h; |
|
pbot = pbot - delta_h; |
|
//printf(" result_ar = %f, oh_tmp = %f, delta_h = %d, ptop = %f, pbot = %f \n", result_ar, oh_tmp, delta_h, ptop, pbot); |
|
} |
|
else // swidth - should be increased |
|
{ |
|
float ow_tmp = oh * net_ar; |
|
float delta_w = (ow_tmp - ow) / 2; |
|
pleft = pleft - delta_w; |
|
pright = pright - delta_w; |
|
//printf(" result_ar = %f, ow_tmp = %f, delta_w = %d, pleft = %f, pright = %f \n", result_ar, ow_tmp, delta_w, pleft, pright); |
|
} |
|
} |
|
|
|
int swidth = ow - pleft - pright; |
|
int sheight = oh - ptop - pbot; |
|
|
|
float sx = (float)swidth / ow; |
|
float sy = (float)sheight / oh; |
|
|
|
image cropped = crop_image(orig, pleft, ptop, swidth, sheight); |
|
|
|
float dx = ((float)pleft / ow) / sx; |
|
float dy = ((float)ptop / oh) / sy; |
|
|
|
image sized = resize_image(cropped, w, h); |
|
if (flip) flip_image(sized); |
|
distort_image(sized, dhue, dsat, dexp); |
|
//random_distort_image(sized, hue, saturation, exposure); |
|
|
|
fill_truth_detection(filename, boxes, truth, classes, flip, dx, dy, 1. / sx, 1. / sy, w, h); |
|
|
|
if (i_mixup) { |
|
image old_img = sized; |
|
old_img.data = d.X.vals[i]; |
|
//show_image(sized, "new"); |
|
//show_image(old_img, "old"); |
|
//wait_until_press_key_cv(); |
|
blend_images(sized, 0.5, old_img, 0.5); |
|
blend_truth(truth, boxes, d.y.vals[i]); |
|
free_image(old_img); |
|
} |
|
|
|
d.X.vals[i] = sized.data; |
|
memcpy(d.y.vals[i], truth, 5 * boxes * sizeof(float)); |
|
|
|
if (show_imgs)// && i_mixup) |
|
{ |
|
char buff[1000]; |
|
sprintf(buff, "aug_%d_%d_%s_%d", random_index, i, basecfg(filename), random_gen()); |
|
|
|
int t; |
|
for (t = 0; t < boxes; ++t) { |
|
box b = float_to_box_stride(d.y.vals[i] + t*(4 + 1), 1); |
|
if (!b.x) break; |
|
int left = (b.x - b.w / 2.)*sized.w; |
|
int right = (b.x + b.w / 2.)*sized.w; |
|
int top = (b.y - b.h / 2.)*sized.h; |
|
int bot = (b.y + b.h / 2.)*sized.h; |
|
draw_box_width(sized, left, top, right, bot, 1, 150, 100, 50); // 3 channels RGB |
|
} |
|
|
|
save_image(sized, buff); |
|
if (show_imgs == 1) { |
|
show_image(sized, buff); |
|
wait_until_press_key_cv(); |
|
} |
|
printf("\nYou use flag -show_imgs, so will be saved aug_...jpg images. Press Enter: \n"); |
|
//getchar(); |
|
} |
|
|
|
free_image(orig); |
|
free_image(cropped); |
|
free(truth); |
|
} |
|
} |
|
free(random_paths); |
|
if (mixup_random_paths) free(mixup_random_paths); |
|
return d; |
|
} |
|
#endif // OPENCV |
|
|
|
void *load_thread(void *ptr) |
|
{ |
|
//srand(time(0)); |
|
//printf("Loading data: %d\n", random_gen()); |
|
load_args a = *(struct load_args*)ptr; |
|
if(a.exposure == 0) a.exposure = 1; |
|
if(a.saturation == 0) a.saturation = 1; |
|
if(a.aspect == 0) a.aspect = 1; |
|
|
|
if (a.type == OLD_CLASSIFICATION_DATA){ |
|
*a.d = load_data_old(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); |
|
} else if (a.type == CLASSIFICATION_DATA){ |
|
*a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.hierarchy, a.flip, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure); |
|
} else if (a.type == SUPER_DATA){ |
|
*a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale); |
|
} else if (a.type == WRITING_DATA){ |
|
*a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h); |
|
} else if (a.type == REGION_DATA){ |
|
*a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure); |
|
} else if (a.type == DETECTION_DATA){ |
|
*a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.c, a.num_boxes, a.classes, a.flip, a.blur, a.mixup, a.jitter, |
|
a.hue, a.saturation, a.exposure, a.mini_batch, a.track, a.augment_speed, a.letter_box, a.show_imgs); |
|
} else if (a.type == SWAG_DATA){ |
|
*a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter); |
|
} else if (a.type == COMPARE_DATA){ |
|
*a.d = load_data_compare(a.n, a.paths, a.m, a.classes, a.w, a.h); |
|
} else if (a.type == IMAGE_DATA){ |
|
*(a.im) = load_image(a.path, 0, 0, a.c); |
|
*(a.resized) = resize_image(*(a.im), a.w, a.h); |
|
}else if (a.type == LETTERBOX_DATA) { |
|
*(a.im) = load_image(a.path, 0, 0, a.c); |
|
*(a.resized) = letterbox_image(*(a.im), a.w, a.h); |
|
} else if (a.type == TAG_DATA){ |
|
*a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.flip, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure); |
|
} |
|
free(ptr); |
|
return 0; |
|
} |
|
|
|
pthread_t load_data_in_thread(load_args args) |
|
{ |
|
pthread_t thread; |
|
struct load_args* ptr = (load_args*)calloc(1, sizeof(struct load_args)); |
|
*ptr = args; |
|
if(pthread_create(&thread, 0, load_thread, ptr)) error("Thread creation failed"); |
|
return thread; |
|
} |
|
|
|
void *load_threads(void *ptr) |
|
{ |
|
//srand(time(0)); |
|
int i; |
|
load_args args = *(load_args *)ptr; |
|
if (args.threads == 0) args.threads = 1; |
|
data *out = args.d; |
|
int total = args.n; |
|
free(ptr); |
|
data* buffers = (data*)calloc(args.threads, sizeof(data)); |
|
pthread_t* threads = (pthread_t*)calloc(args.threads, sizeof(pthread_t)); |
|
for(i = 0; i < args.threads; ++i){ |
|
args.d = buffers + i; |
|
args.n = (i+1) * total/args.threads - i * total/args.threads; |
|
threads[i] = load_data_in_thread(args); |
|
} |
|
for(i = 0; i < args.threads; ++i){ |
|
pthread_join(threads[i], 0); |
|
} |
|
*out = concat_datas(buffers, args.threads); |
|
out->shallow = 0; |
|
for(i = 0; i < args.threads; ++i){ |
|
buffers[i].shallow = 1; |
|
free_data(buffers[i]); |
|
} |
|
free(buffers); |
|
free(threads); |
|
return 0; |
|
} |
|
|
|
pthread_t load_data(load_args args) |
|
{ |
|
pthread_t thread; |
|
struct load_args* ptr = (load_args*)calloc(1, sizeof(struct load_args)); |
|
*ptr = args; |
|
if(pthread_create(&thread, 0, load_threads, ptr)) error("Thread creation failed"); |
|
return thread; |
|
} |
|
|
|
data load_data_writing(char **paths, int n, int m, int w, int h, int out_w, int out_h) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png"); |
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = load_image_paths(paths, n, w, h); |
|
d.y = load_image_paths_gray(replace_paths, n, out_w, out_h); |
|
if(m) free(paths); |
|
int i; |
|
for(i = 0; i < n; ++i) free(replace_paths[i]); |
|
free(replace_paths); |
|
return d; |
|
} |
|
|
|
data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = load_image_paths(paths, n, w, h); |
|
d.y = load_labels_paths(paths, n, labels, k, 0); |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
/* |
|
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) |
|
{ |
|
data d = {0}; |
|
d.indexes = calloc(n, sizeof(int)); |
|
if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes); |
|
d.shallow = 0; |
|
d.X = load_image_augment_paths(paths, n, flip, min, max, size, angle, aspect, hue, saturation, exposure); |
|
d.y = load_labels_paths(paths, n, labels, k); |
|
if(m) free(paths); |
|
return d; |
|
} |
|
*/ |
|
|
|
data load_data_super(char **paths, int n, int m, int w, int h, int scale) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.shallow = 0; |
|
|
|
int i; |
|
d.X.rows = n; |
|
d.X.vals = (float**)calloc(n, sizeof(float*)); |
|
d.X.cols = w*h*3; |
|
|
|
d.y.rows = n; |
|
d.y.vals = (float**)calloc(n, sizeof(float*)); |
|
d.y.cols = w*scale * h*scale * 3; |
|
|
|
for(i = 0; i < n; ++i){ |
|
image im = load_image_color(paths[i], 0, 0); |
|
image crop = random_crop_image(im, w*scale, h*scale); |
|
int flip = random_gen()%2; |
|
if (flip) flip_image(crop); |
|
image resize = resize_image(crop, w, h); |
|
d.X.vals[i] = resize.data; |
|
d.y.vals[i] = crop.data; |
|
free_image(im); |
|
} |
|
|
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
data load_data_augment(char **paths, int n, int m, char **labels, int k, tree *hierarchy, int use_flip, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = load_image_augment_paths(paths, n, use_flip, min, max, size, angle, aspect, hue, saturation, exposure); |
|
d.y = load_labels_paths(paths, n, labels, k, hierarchy); |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
data load_data_tag(char **paths, int n, int m, int k, int use_flip, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) |
|
{ |
|
if(m) paths = get_random_paths(paths, n, m); |
|
data d = {0}; |
|
d.w = size; |
|
d.h = size; |
|
d.shallow = 0; |
|
d.X = load_image_augment_paths(paths, n, use_flip, min, max, size, angle, aspect, hue, saturation, exposure); |
|
d.y = load_tags_paths(paths, n, k); |
|
if(m) free(paths); |
|
return d; |
|
} |
|
|
|
matrix concat_matrix(matrix m1, matrix m2) |
|
{ |
|
int i, count = 0; |
|
matrix m; |
|
m.cols = m1.cols; |
|
m.rows = m1.rows+m2.rows; |
|
m.vals = (float**)calloc(m1.rows + m2.rows, sizeof(float*)); |
|
for(i = 0; i < m1.rows; ++i){ |
|
m.vals[count++] = m1.vals[i]; |
|
} |
|
for(i = 0; i < m2.rows; ++i){ |
|
m.vals[count++] = m2.vals[i]; |
|
} |
|
return m; |
|
} |
|
|
|
data concat_data(data d1, data d2) |
|
{ |
|
data d = {0}; |
|
d.shallow = 1; |
|
d.X = concat_matrix(d1.X, d2.X); |
|
d.y = concat_matrix(d1.y, d2.y); |
|
return d; |
|
} |
|
|
|
data concat_datas(data *d, int n) |
|
{ |
|
int i; |
|
data out = {0}; |
|
for(i = 0; i < n; ++i){ |
|
data newdata = concat_data(d[i], out); |
|
free_data(out); |
|
out = newdata; |
|
} |
|
return out; |
|
} |
|
|
|
data load_categorical_data_csv(char *filename, int target, int k) |
|
{ |
|
data d = {0}; |
|
d.shallow = 0; |
|
matrix X = csv_to_matrix(filename); |
|
float *truth_1d = pop_column(&X, target); |
|
float **truth = one_hot_encode(truth_1d, X.rows, k); |
|
matrix y; |
|
y.rows = X.rows; |
|
y.cols = k; |
|
y.vals = truth; |
|
d.X = X; |
|
d.y = y; |
|
free(truth_1d); |
|
return d; |
|
} |
|
|
|
data load_cifar10_data(char *filename) |
|
{ |
|
data d = {0}; |
|
d.shallow = 0; |
|
long i,j; |
|
matrix X = make_matrix(10000, 3072); |
|
matrix y = make_matrix(10000, 10); |
|
d.X = X; |
|
d.y = y; |
|
|
|
FILE *fp = fopen(filename, "rb"); |
|
if(!fp) file_error(filename); |
|
for(i = 0; i < 10000; ++i){ |
|
unsigned char bytes[3073]; |
|
fread(bytes, 1, 3073, fp); |
|
int class_id = bytes[0]; |
|
y.vals[i][class_id] = 1; |
|
for(j = 0; j < X.cols; ++j){ |
|
X.vals[i][j] = (double)bytes[j+1]; |
|
} |
|
} |
|
//translate_data_rows(d, -128); |
|
scale_data_rows(d, 1./255); |
|
//normalize_data_rows(d); |
|
fclose(fp); |
|
return d; |
|
} |
|
|
|
void get_random_batch(data d, int n, float *X, float *y) |
|
{ |
|
int j; |
|
for(j = 0; j < n; ++j){ |
|
int index = random_gen()%d.X.rows; |
|
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); |
|
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); |
|
} |
|
} |
|
|
|
void get_next_batch(data d, int n, int offset, float *X, float *y) |
|
{ |
|
int j; |
|
for(j = 0; j < n; ++j){ |
|
int index = offset + j; |
|
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); |
|
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); |
|
} |
|
} |
|
|
|
void smooth_data(data d) |
|
{ |
|
int i, j; |
|
float scale = 1. / d.y.cols; |
|
float eps = .1; |
|
for(i = 0; i < d.y.rows; ++i){ |
|
for(j = 0; j < d.y.cols; ++j){ |
|
d.y.vals[i][j] = eps * scale + (1-eps) * d.y.vals[i][j]; |
|
} |
|
} |
|
} |
|
|
|
data load_all_cifar10() |
|
{ |
|
data d = {0}; |
|
d.shallow = 0; |
|
int i,j,b; |
|
matrix X = make_matrix(50000, 3072); |
|
matrix y = make_matrix(50000, 10); |
|
d.X = X; |
|
d.y = y; |
|
|
|
|
|
for(b = 0; b < 5; ++b){ |
|
char buff[256]; |
|
sprintf(buff, "data/cifar/cifar-10-batches-bin/data_batch_%d.bin", b+1); |
|
FILE *fp = fopen(buff, "rb"); |
|
if(!fp) file_error(buff); |
|
for(i = 0; i < 10000; ++i){ |
|
unsigned char bytes[3073]; |
|
fread(bytes, 1, 3073, fp); |
|
int class_id = bytes[0]; |
|
y.vals[i+b*10000][class_id] = 1; |
|
for(j = 0; j < X.cols; ++j){ |
|
X.vals[i+b*10000][j] = (double)bytes[j+1]; |
|
} |
|
} |
|
fclose(fp); |
|
} |
|
//normalize_data_rows(d); |
|
//translate_data_rows(d, -128); |
|
scale_data_rows(d, 1./255); |
|
smooth_data(d); |
|
return d; |
|
} |
|
|
|
data load_go(char *filename) |
|
{ |
|
FILE *fp = fopen(filename, "rb"); |
|
matrix X = make_matrix(3363059, 361); |
|
matrix y = make_matrix(3363059, 361); |
|
int row, col; |
|
|
|
if(!fp) file_error(filename); |
|
char *label; |
|
int count = 0; |
|
while((label = fgetl(fp))){ |
|
int i; |
|
if(count == X.rows){ |
|
X = resize_matrix(X, count*2); |
|
y = resize_matrix(y, count*2); |
|
} |
|
sscanf(label, "%d %d", &row, &col); |
|
char *board = fgetl(fp); |
|
|
|
int index = row*19 + col; |
|
y.vals[count][index] = 1; |
|
|
|
for(i = 0; i < 19*19; ++i){ |
|
float val = 0; |
|
if(board[i] == '1') val = 1; |
|
else if(board[i] == '2') val = -1; |
|
X.vals[count][i] = val; |
|
} |
|
++count; |
|
free(label); |
|
free(board); |
|
} |
|
X = resize_matrix(X, count); |
|
y = resize_matrix(y, count); |
|
|
|
data d = {0}; |
|
d.shallow = 0; |
|
d.X = X; |
|
d.y = y; |
|
|
|
|
|
fclose(fp); |
|
|
|
return d; |
|
} |
|
|
|
|
|
void randomize_data(data d) |
|
{ |
|
int i; |
|
for(i = d.X.rows-1; i > 0; --i){ |
|
int index = random_gen()%i; |
|
float *swap = d.X.vals[index]; |
|
d.X.vals[index] = d.X.vals[i]; |
|
d.X.vals[i] = swap; |
|
|
|
swap = d.y.vals[index]; |
|
d.y.vals[index] = d.y.vals[i]; |
|
d.y.vals[i] = swap; |
|
} |
|
} |
|
|
|
void scale_data_rows(data d, float s) |
|
{ |
|
int i; |
|
for(i = 0; i < d.X.rows; ++i){ |
|
scale_array(d.X.vals[i], d.X.cols, s); |
|
} |
|
} |
|
|
|
void translate_data_rows(data d, float s) |
|
{ |
|
int i; |
|
for(i = 0; i < d.X.rows; ++i){ |
|
translate_array(d.X.vals[i], d.X.cols, s); |
|
} |
|
} |
|
|
|
void normalize_data_rows(data d) |
|
{ |
|
int i; |
|
for(i = 0; i < d.X.rows; ++i){ |
|
normalize_array(d.X.vals[i], d.X.cols); |
|
} |
|
} |
|
|
|
data get_data_part(data d, int part, int total) |
|
{ |
|
data p = {0}; |
|
p.shallow = 1; |
|
p.X.rows = d.X.rows * (part + 1) / total - d.X.rows * part / total; |
|
p.y.rows = d.y.rows * (part + 1) / total - d.y.rows * part / total; |
|
p.X.cols = d.X.cols; |
|
p.y.cols = d.y.cols; |
|
p.X.vals = d.X.vals + d.X.rows * part / total; |
|
p.y.vals = d.y.vals + d.y.rows * part / total; |
|
return p; |
|
} |
|
|
|
data get_random_data(data d, int num) |
|
{ |
|
data r = {0}; |
|
r.shallow = 1; |
|
|
|
r.X.rows = num; |
|
r.y.rows = num; |
|
|
|
r.X.cols = d.X.cols; |
|
r.y.cols = d.y.cols; |
|
|
|
r.X.vals = (float**)calloc(num, sizeof(float*)); |
|
r.y.vals = (float**)calloc(num, sizeof(float*)); |
|
|
|
int i; |
|
for(i = 0; i < num; ++i){ |
|
int index = random_gen()%d.X.rows; |
|
r.X.vals[i] = d.X.vals[index]; |
|
r.y.vals[i] = d.y.vals[index]; |
|
} |
|
return r; |
|
} |
|
|
|
data *split_data(data d, int part, int total) |
|
{ |
|
data* split = (data*)calloc(2, sizeof(data)); |
|
int i; |
|
int start = part*d.X.rows/total; |
|
int end = (part+1)*d.X.rows/total; |
|
data train; |
|
data test; |
|
train.shallow = test.shallow = 1; |
|
|
|
test.X.rows = test.y.rows = end-start; |
|
train.X.rows = train.y.rows = d.X.rows - (end-start); |
|
train.X.cols = test.X.cols = d.X.cols; |
|
train.y.cols = test.y.cols = d.y.cols; |
|
|
|
train.X.vals = (float**)calloc(train.X.rows, sizeof(float*)); |
|
test.X.vals = (float**)calloc(test.X.rows, sizeof(float*)); |
|
train.y.vals = (float**)calloc(train.y.rows, sizeof(float*)); |
|
test.y.vals = (float**)calloc(test.y.rows, sizeof(float*)); |
|
|
|
for(i = 0; i < start; ++i){ |
|
train.X.vals[i] = d.X.vals[i]; |
|
train.y.vals[i] = d.y.vals[i]; |
|
} |
|
for(i = start; i < end; ++i){ |
|
test.X.vals[i-start] = d.X.vals[i]; |
|
test.y.vals[i-start] = d.y.vals[i]; |
|
} |
|
for(i = end; i < d.X.rows; ++i){ |
|
train.X.vals[i-(end-start)] = d.X.vals[i]; |
|
train.y.vals[i-(end-start)] = d.y.vals[i]; |
|
} |
|
split[0] = train; |
|
split[1] = test; |
|
return split; |
|
}
|
|
|