You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1337 lines
56 KiB

#include <cuda_runtime.h>
#include <curand.h>
#include <cublas_v2.h>
#include "convolutional_layer.h"
#include "batchnorm_layer.h"
#include "gemm.h"
#include "blas.h"
#include "im2col.h"
#include "col2im.h"
#include "utils.h"
#include "dark_cuda.h"
#include "box.h"
__global__ void binarize_kernel(float *x, int n, float *binary)
{
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (i >= n) return;
binary[i] = (x[i] >= 0) ? 1 : -1;
}
void binarize_gpu(float *x, int n, float *binary)
{
binarize_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >>>(x, n, binary);
CHECK_CUDA(cudaPeekAtLastError());
}
__global__ void binarize_input_kernel(float *input, int n, int size, float *binary)
{
int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (s >= size) return;
int i = 0;
float mean = 0;
for(i = 0; i < n; ++i){
mean += fabs(input[i*size + s]);
}
mean = mean / n;
for(i = 0; i < n; ++i){
binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
}
}
void binarize_input_gpu(float *input, int n, int size, float *binary)
{
binarize_input_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >>>(input, n, size, binary);
CHECK_CUDA(cudaPeekAtLastError());
}
__global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary)
{
int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if (f >= n) return;
int i = 0;
float mean = 0;
for (i = 0; i < size; ++i) {
mean += fabs(weights[f*size + i]);
}
mean = mean / size;
for (i = 0; i < size; ++i) {
binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
//binary[f*size + i] = weights[f*size + i];
}
}
void binarize_weights_gpu(float *weights, int n, int size, float *binary)
{
binarize_weights_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(weights, n, size, binary);
CHECK_CUDA(cudaPeekAtLastError());
}
__global__ void set_zero_kernel(float *src, int size)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < size) src[i] = 0;
}
__inline__ __device__
float warpAllReduceSum(float val) {
for (int mask = WARP_SIZE / 2; mask > 0; mask /= 2)
#if CUDART_VERSION >= 9000
val += __shfl_xor_sync(0xffffffff, val, mask);
#else
val += __shfl_xor(val, mask);
#endif
return val;
}
// only if (size % 32 == 0)
__global__ void reduce_kernel(float *weights, int n, int size, float *mean_arr_gpu)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int f = i / size;
if (f >= n) return;
float warp_mean = warpAllReduceSum(fabs(weights[i]));
if(i % 32 == 0)
atomicAdd(&mean_arr_gpu[f], warp_mean / size);
}
__global__ void binarize_weights_mean_kernel(float *weights, int n, int size, float *binary, float *mean_arr_gpu)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int f = i / size;
if (f >= n) return;
float mean = mean_arr_gpu[f];
binary[i] = (weights[i] > 0) ? mean : -mean;
}
void fast_binarize_weights_gpu(float *weights, int n, int size, float *binary, float *mean_arr_gpu)
{
if (size % 32 == 0) {
size_t gridsize = n * size;
const int num_blocks = get_number_of_blocks(gridsize, BLOCK);// gridsize / BLOCK + 1;
set_zero_kernel << <(n/BLOCK + 1), BLOCK, 0, get_cuda_stream() >> > (mean_arr_gpu, n);
reduce_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (weights, n, size, mean_arr_gpu);
binarize_weights_mean_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (weights, n, size, binary, mean_arr_gpu);
CHECK_CUDA(cudaPeekAtLastError());
}
else {
binarize_weights_gpu(weights, n, size, binary);
}
}
__global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) output_f16[idx] = __float2half(input_f32[idx]);
//if (idx < size) output_f16[idx] = __float2half_rn(input_f32[idx]); // can't be compiled on Linux without casting
// __float2half_ru, __float2half_rd, __float2half_rz, __float2half_rn
//if (idx < size) *((unsigned short *)output_f16 + idx) = __float2half(input_f32[idx]);
}
void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16) {
cuda_f32_to_f16 <<< get_number_of_blocks(size, BLOCK), BLOCK, 0, get_cuda_stream() >>> (input_f32, size, (half *)output_f16);
CHECK_CUDA(cudaPeekAtLastError());
}
__global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) output_f32[idx] = __half2float(input_f16[idx]);
//if (idx < size) output_f32[idx] = __half2float(*((unsigned short *)input_f16 + idx));
}
void cuda_convert_f16_to_f32(float* input_f16, size_t size, float *output_f32) {
cuda_f16_to_f32 <<< get_number_of_blocks(size, BLOCK), BLOCK, 0, get_cuda_stream() >>> ((half *)input_f16, size, output_f32);
CHECK_CUDA(cudaPeekAtLastError());
}
half *cuda_make_f16_from_f32_array(float *src, size_t n)
{
half *dst16;
size_t size = sizeof(half)*n;
CHECK_CUDA(cudaMalloc((void **)&dst16, size));
if (src) {
assert(n > 0);
cuda_convert_f32_to_f16(src, n, (float *)dst16);
}
if (!dst16) error("Cuda malloc failed\n");
return dst16;
}
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
//fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
if(l.binary){
binarize_weights_gpu(l.weights_gpu, l.n, (l.c / l.groups)*l.size*l.size, l.binary_weights_gpu);
swap_binary(&l);
}
if(l.xnor){
if (!l.align_bit_weights_gpu || state.train) {
//binarize_weights_gpu(l.weights_gpu, l.n, (l.c / l.groups)*l.size*l.size, l.binary_weights_gpu);
fast_binarize_weights_gpu(l.weights_gpu, l.n, (l.c / l.groups)*l.size*l.size, l.binary_weights_gpu, l.mean_arr_gpu);
}
if (l.align_bit_weights_gpu && !state.train && l.c >= 32 && l.stride_x == l.stride_y)
{
//return;
//cudaError_t status = cudaSuccess;
//int input_size = l.c*l.h*l.w*l.batch;
int m = l.n / l.groups;
int k = l.size*l.size*l.c / l.groups;
int n = l.out_w*l.out_h;
//float * a = l.weights_gpu;
// int i, j;
// for(i = 0; i < l.batch; ++i){
// for (j = 0; j < l.groups; ++j) {
int ldb_align = l.lda_align;
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
//size_t t_intput_size = new_ldb * n;
//size_t t_bit_input_size = t_intput_size / 8;// +1;
if (l.c % 32 == 0)
{
//printf("\n\n l.index = %d, l.w = %d, l.c = %d, l.n = %d, l.stride = %d, l.pad = %d - new XNOR \n", l.index, l.w, l.c, l.n, l.stride, l.pad);
//printf("l.align_workspace_size = %d, (l.c * l.w * l.h) = %d \n", l.align_workspace_size, (l.c * l.w * l.h));
//float *intput_cpu = (float *)calloc(l.inputs, sizeof(float));
// state.input
//cudaMemcpy(intput_cpu, state.input, l.inputs * sizeof(float), cudaMemcpyDefault);
int ldb_align = l.lda_align;
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
//size_t t_intput_size = new_ldb * l.bit_align;// n;
//size_t t_bit_input_size = t_intput_size / 8;// +1;
const int new_c = l.c / 32;
//float *re_packed_input = (float *)calloc(l.c * l.w * l.h, sizeof(float));
//uint32_t *bin_re_packed_input = (uint32_t *)calloc(new_c * l.w * l.h + 1, sizeof(uint32_t));
// float32x4 by channel (as in cuDNN)
//repack_input(intput_cpu, re_packed_input, l.w, l.h, l.c);
// 32 x floats -> 1 x uint32_t
//float_to_bit(re_packed_input, (uint8_t *)bin_re_packed_input, l.c * l.w * l.h);
//cudaDeviceSynchronize();
//start_timer();
repack_input_gpu_bin(state.input, (uint32_t *)l.align_workspace_gpu, l.w, l.h, l.c);
//repack_input_gpu(state.input, state.workspace, l.w, l.h, l.c);
// 32 x floats -> 1 x uint32_t
//float_to_bit_gpu(state.workspace, (unsigned char *)l.align_workspace_gpu, l.c * l.w * l.h);// l.align_workspace_size);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("repack_input_gpu + float_to_bit_gpu");
//free(re_packed_input);
// slow - convolution the packed inputs and weights: float x 32 by channel (as in cuDNN)
//convolution_repacked((uint32_t *)bin_re_packed_input, (uint32_t *)l.align_bit_weights, l.output,
// l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr);
// // then exit from if()
//float *b = state.workspace;
//float *b = (float *)calloc(100 * 1024 * 1024, sizeof(float));
//float *c = l.output;
//memset(c, 0, l.outputs * sizeof(float));
//im2col_cpu_custom((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b);
//cudaMemcpy(l.align_workspace_gpu, bin_re_packed_input, (new_c * l.w * l.h + 1) * sizeof(uint32_t), cudaMemcpyDefault);
//start_timer();
im2col_ongpu(l.align_workspace_gpu, new_c, l.h, l.w, l.size, l.stride, l.pad, state.workspace);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("im2col_ongpu");
//free(bin_re_packed_input);
int new_k = l.size*l.size*l.c / 32;
// good for (l.c == 64)
//gemm_nn_bin_32bit_packed(m, n, new_k, 1,
// l.align_bit_weights, l.new_lda/32,
// b, n,
// c, n, l.mean_arr);
// // then exit from if()
//size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
//size_t t_intput_size = new_ldb * l.bit_align;// n;
//size_t t_bit_input_size = t_intput_size / 8;// +1;
//char *t_bit_input = (char *)calloc(t_bit_input_size, sizeof(char));
//transpose_uint32((uint32_t *)b, (uint32_t *)t_bit_input, new_k, n, n, new_ldb);
//cudaMemcpy(l.transposed_align_workspace_gpu, t_bit_input, t_bit_input_size * sizeof(char), cudaMemcpyDefault);
//cudaMemcpy(state.workspace, b, t_bit_input_size * sizeof(char), cudaMemcpyDefault);
//printf("\n n = %d, n % 32 = %d, new_ldb = %d, new_ldb % 32 = %d \n", n, n % 32, new_ldb, new_ldb % 32);
//start_timer();
transpose_uint32_gpu((uint32_t *)state.workspace, (uint32_t *)l.transposed_align_workspace_gpu, new_k, n, n, new_ldb);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("transpose_uint32_gpu");
//cudaDeviceSynchronize();
//stop_timer_and_show_name("repack_input_gpu_bin + im2col_ongpu + transpose_uint32_gpu_2");
//start_timer();
gemm_nn_custom_bin_mean_transposed_gpu(m, n, k,
(unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu,
new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu, l.activation == LEAKY,
l.bin_conv_shortcut_in_gpu, l.bin_conv_shortcut_out_gpu);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("gemm_nn_custom_bin_mean_transposed_gpu");
// the main GEMM function
//gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (uint8_t *)l.align_bit_weights, new_ldb, (uint8_t *)t_bit_input, new_ldb, c, n, l.mean_arr);
//add_bias(l.output, l.biases, l.batch, l.n, l.out_h*l.out_w);
//cudaMemcpy(l.output_gpu, l.output, l.outputs * sizeof(float), cudaMemcpyDefault);
// // alternative GEMM
//gemm_nn_bin_transposed_32bit_packed(m, n, new_k, 1,
// l.align_bit_weights, l.new_lda/32,
// t_bit_input, new_ldb / 32,
// c, n, l.mean_arr);
//free(t_bit_input);
//free(b);
}
else
{
//printf("\n\n l.index = %d, l.w = %d, l.c = %d, l.n = %d, l.stride = %d, l.pad = %d - old XNOR \n", l.index, l.w, l.c, l.n, l.stride, l.pad);
//cudaDeviceSynchronize();
int i = 0;
/*
// if (l.stride == 1 && l.c >= 256 && l.size > 1)
if (l.stride == 1 && l.c >= 1024 && l.size > 1 && 0)// && l.w >= 13) // disabled
{
// stride=1 only
//start_timer();
im2col_align_bin_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("im2col_align_bin_ongpu");
}
else*/
{
//start_timer();
im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.align_workspace_gpu, l.bit_align);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("im2col_align_ongpu");
//getchar();
// should be optimized
//start_timer();
float_to_bit_gpu(l.align_workspace_gpu, (unsigned char *)state.workspace, l.align_workspace_size);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("float_to_bit_gpu");
}
//start_timer();
transpose_bin_gpu((unsigned char *)state.workspace, (unsigned char *)l.transposed_align_workspace_gpu, k, n, l.bit_align, new_ldb, 8);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("transpose_bin_gpu");
//cudaDeviceSynchronize();
//stop_timer_and_show_name("im2col_align_ongpu + float_to_bit_gpu + transpose_bin_gpu");
// should be optimized
//if(0) {//if (k > 1000) { // sequentially input-shared - BAD
// gemm_nn_custom_bin_mean_transposed_sequentially_gpu(m, n, k,
// (unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu);
//}
//else { // coalescing & weights-shared-memory - GOOD
//start_timer();
gemm_nn_custom_bin_mean_transposed_gpu(m, n, k,
(unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu,
new_ldb, l.output_gpu, n, l.mean_arr_gpu, l.biases_gpu, l.activation == LEAKY,
l.bin_conv_shortcut_in_gpu, l.bin_conv_shortcut_out_gpu);
//cudaDeviceSynchronize();
//stop_timer_and_show_name("gemm_nn_custom_bin_mean_transposed_gpu");
//}
//cudaDeviceSynchronize();
//check_error(status);
//getchar();
}
/*
{
float_to_bit_gpu(state.input, (unsigned char *)l.align_workspace_gpu, input_size);
convolve_bin_gpu(l.align_workspace_gpu, (float *)l.align_bit_weights_gpu, l.output_gpu, l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr_gpu);
//convolve_gpu(state.input, l.weights_gpu, l.output_gpu, l.w, l.h, l.c, l.n, l.size, l.pad);
//cudaDeviceSynchronize();
//check_error(status);
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
}
*/
//add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu);
else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu);
else if (l.activation == NORM_CHAN) activate_array_normalize_channels_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu);
else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu);
else if (l.activation != LINEAR && l.activation != LEAKY) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
//if(l.activation != LINEAR && l.activation != LEAKY) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
//if (l.binary || l.xnor) swap_binary(&l);
//cudaDeviceSynchronize();
return;
}
}
if (l.xnor) {
swap_binary(&l);
binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
state.input = l.binary_input_gpu;
}
//fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
#ifdef CUDNN
//float one = 1; // alpha[0], beta[0] is float for HALF and FLOAT
float alpha = 1, beta = 0;
//#ifdef CUDNN_HALF
//if (state.use_mixed_precision) {
int iteration_num = (*state.net.seen) / (state.net.batch*state.net.subdivisions);
if (state.index != 0 && state.net.cudnn_half && !l.xnor && (!state.train || iteration_num > 3*state.net.burn_in) &&
(l.c / l.groups) % 8 == 0 && l.n % 8 == 0 && !state.train && l.groups == 1)
{
//printf("\n CUDNN_HALF!!! state.index = %d \n", state.index);
// Note: For improved performance it is advised to use beta[0] = 0.0.
// For Tensor Core: cudnnSetConvolutionMathType() where cudnnMathType_t mathType = CUDNN_TENSOR_OP_MATH;
// 1. or CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM and use CUDNN_DATA_HALF
// 2. or CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED
// More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
const size_t input16_size = l.batch*l.c*l.w*l.h;
const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w;
if (*state.net.max_input16_size < input16_size) {
//printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size);
*state.net.max_input16_size = input16_size;
if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu);
assert(*state.net.max_input16_size > 0);
*state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size);
}
float *input16 = *state.net.input16_gpu;
if (*state.net.max_output16_size < output16_size) {
*state.net.max_output16_size = output16_size;
if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu);
assert(*state.net.max_output16_size > 0);
*state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size);
}
float *output16 = *state.net.output16_gpu;
assert(input16_size > 0);
cuda_convert_f32_to_f16(state.input, input16_size, input16);
//fill_ongpu(output16_size / 2, 0, (float *)output16, 1);
CHECK_CUDNN(cudnnConvolutionForward(cudnn_handle(),
&alpha,
l.srcTensorDesc16,
input16,
l.weightDesc16,
l.weights_gpu16,
l.convDesc,
l.fw_algo16,
state.workspace,
l.workspace_size,
&beta,
l.dstTensorDesc16,
output16));
if (l.batch_normalize)
{
if (state.train) // Training
{
simple_copy_ongpu(l.outputs*l.batch / 2, output16, l.x_gpu);
//copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1);
//cudaMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), cudaMemcpyDefault, get_cuda_stream());
float one = 1.0f;
float zero = 0.0f;
// Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth
// compared to FP32, it's just that the statistics and value adjustment should be done in FP32.
CHECK_CUDNN(cudnnBatchNormalizationForwardTraining(cudnn_handle(),
CUDNN_BATCHNORM_SPATIAL,
&one,
&zero,
l.normDstTensorDescF16,
l.x_gpu, // input
l.normDstTensorDescF16,
output16, // output
l.normTensorDesc,
l.scales_gpu, // input
l.biases_gpu, // input
.01,
l.rolling_mean_gpu, // input/output (should be FP32)
l.rolling_variance_gpu, // input/output (should be FP32)
.00001,
l.mean_gpu, // output (should be FP32) - optional cache to speedup cudnnBatchNormalizationBackward()
l.variance_gpu)); // output (should be FP32) - optional cache to speedup cudnnBatchNormalizationBackward()
cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
//forward_batchnorm_layer_gpu(l, state);
}
else // Detection
{
cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w);
scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w);
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h);
}
}
else // BIAS only
{
cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu);
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
}
}
else {
//#else
/*
int input_nan_inf = is_nan_or_inf(state.input, l.inputs * l.batch);
printf("\n is_nan_or_inf(state.input) = %d \n", input_nan_inf);
if (input_nan_inf) getchar();
int weights_nan_inf = is_nan_or_inf(l.weights_gpu, l.nweights);
printf("\n is_nan_or_inf(l.weights_gpu) = %d \n", weights_nan_inf);
if (weights_nan_inf) getchar();
*/
CHECK_CUDNN(cudnnConvolutionForward(cudnn_handle(),
&alpha, //&one,
l.srcTensorDesc,
state.input,
l.weightDesc,
l.weights_gpu,
l.convDesc,
l.fw_algo,
state.workspace,
l.workspace_size,
&beta, //&one,
l.dstTensorDesc,
l.output_gpu));
//cudaDeviceSynchronize();
if (l.batch_normalize) {
forward_batchnorm_layer_gpu(l, state);
}
else {
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
}
//#endif // CUDNN_HALF
}
#else
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
int i, j;
int m = l.n / l.groups;
int k = l.size*l.size*l.c / l.groups;
int n = l.out_w*l.out_h;
for(i = 0; i < l.batch; ++i){
for (j = 0; j < l.groups; ++j) {
//float *im = state.input + i*l.c*l.h*l.w;
float *im = state.input + (i*l.groups + j)*l.c / l.groups*l.h*l.w;
float *a = l.weights_gpu + j*l.nweights / l.groups;
float *b = state.workspace;
float *c = l.output_gpu + (i*l.groups + j)*n*m;
if (l.size == 1) {
b = im;
}
else {
//im2col_ongpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, state.workspace);
im2col_gpu_ext(im, // input
l.c / l.groups, // input channels
l.h, l.w, // input size (h, w)
l.size, l.size, // kernel size (h, w)
l.pad, l.pad, // padding (h, w)
l.stride_y, l.stride_x, // stride (h, w)
l.dilation, l.dilation, // dilation (h, w)
state.workspace); // output
}
//gemm_ongpu(0, 0, m, n, k, 1., a, k, b, n, 1., c + i*m*n, n);
gemm_ongpu(0, 0, m, n, k, 1, a, k, b, n, 1, c, n);
}
}
if (l.batch_normalize) {
forward_batchnorm_layer_gpu(l, state);
}
else {
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
}
#endif
//#ifndef CUDNN_HALF
//#endif // no CUDNN_HALF
if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu);
else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu);
else if (l.activation == NORM_CHAN) activate_array_normalize_channels_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu);
else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output_gpu);
else if (l.activation != LINEAR) activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
//if(l.dot > 0) dot_error_gpu(l);
if(l.binary || l.xnor) swap_binary(&l);
//cudaDeviceSynchronize(); // for correct profiling of performance
if (state.net.try_fix_nan) {
fix_nan_and_inf(l.output_gpu, l.outputs*l.batch);
}
if(l.assisted_excitation && state.train) assisted_excitation_forward_gpu(l, state);
if (l.antialiasing) {
network_state s = { 0 };
s.train = state.train;
s.workspace = state.workspace;
s.net = state.net;
if (!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() )
s.input = l.output_gpu;
forward_convolutional_layer_gpu(*(l.input_layer), s);
simple_copy_ongpu(l.outputs*l.batch, l.output_gpu, l.input_antialiasing_gpu);
simple_copy_ongpu(l.input_layer->outputs*l.input_layer->batch, l.input_layer->output_gpu, l.output_gpu);
}
}
void backward_convolutional_layer_gpu(convolutional_layer l, network_state state)
{
if (l.antialiasing) {
network_state s = { 0 };
s.train = state.train;
s.workspace = state.workspace;
s.net = state.net;
s.delta = l.delta_gpu; // s.delta will be returned to l.delta_gpu
s.input = l.input_antialiasing_gpu;
//if (!state.train) s.index = state.index; // don't use TC for training (especially without cuda_convert_f32_to_f16() )
simple_copy_ongpu(l.input_layer->outputs*l.input_layer->batch, l.delta_gpu, l.input_layer->delta_gpu);
backward_convolutional_layer_gpu(*(l.input_layer), s);
simple_copy_ongpu(l.outputs*l.batch, l.input_antialiasing_gpu, l.output_gpu);
}
if(state.net.try_fix_nan) constrain_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
if (l.activation == SWISH) gradient_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu);
else if (l.activation == MISH) gradient_array_mish_ongpu(l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu);
else if (l.activation == NORM_CHAN_SOFTMAX) gradient_array_normalize_channels_softmax_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
else if (l.activation == NORM_CHAN) gradient_array_normalize_channels_ongpu(l.output_gpu, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu);
else gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
if (!l.batch_normalize)
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
//#ifndef CUDNN_HALF
//if(l.batch_normalize){
// backward_batchnorm_layer_gpu(l, state);
//} else {
// //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
//}
//#endif // no CUDNN_HALF
float *original_input = state.input;
if(l.xnor) state.input = l.binary_input_gpu;
#ifdef CUDNN
float one = 1.f;
float alpha = 1, beta = 0;
//#ifdef CUDNN_HALF
int iteration_num = (*state.net.seen) / (state.net.batch*state.net.subdivisions);
if (state.index != 0 && state.net.cudnn_half && !l.xnor && (!state.train || iteration_num > 3*state.net.burn_in) &&
(l.c / l.groups) % 8 == 0 && l.n % 8 == 0 && !state.train && l.groups == 1)
{
const size_t input16_size = l.batch*l.c*l.w*l.h;
const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h;
if (*state.net.max_input16_size < input16_size) {
*state.net.max_input16_size = input16_size;
if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu);
assert(*state.net.max_input16_size > 0);
*state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size);
}
float *input16 = *state.net.input16_gpu;
if (*state.net.max_output16_size < delta16_size) {
*state.net.max_output16_size = delta16_size;
if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu);
assert(*state.net.max_output16_size > 0);
*state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size);
}
float *delta16 = *state.net.output16_gpu;
assert(input16_size > 0);
assert(delta16_size > 0);
cuda_convert_f32_to_f16(state.input, input16_size, input16);
cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16);
if (l.batch_normalize) {
//if (!state.train) {
// l.mean_gpu = l.rolling_mean_gpu;
// l.variance_gpu = l.rolling_variance_gpu;
//}
float one = 1.0f;
float zero = 0.0f;
CHECK_CUDNN(cudnnBatchNormalizationBackward(cudnn_handle(),
CUDNN_BATCHNORM_SPATIAL,
&one,
&zero,
&one,
&one,
l.normDstTensorDescF16,
l.x_gpu, // input (input in BN-forward-inference)
l.normDstTensorDescF16,
delta16, // input
l.normDstTensorDescF16,
l.x_norm_gpu, // output (new delta)
l.normTensorDesc,
l.scales_gpu, // input (should be FP32)
l.scale_updates_gpu, // output (should be FP32)
l.bias_updates_gpu, // output (should be FP32)
.00001,
l.mean_gpu, // input (should be FP32)
l.variance_gpu)); // input (should be FP32)
simple_copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, delta16);
//copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1);
//cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream());
}
else
{
//backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h);
}
// convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16
// get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16)
// calculate conv weight updates
// Already: l.weight_updates_gpu = (l.weight_updates_gpu - l.weight*decay*batch*subdivision)*momentum
// so we should copy f32 to f16, or compute: f16=(w_up - w*d*b*s)*m
assert((l.nweights) > 0);
cuda_convert_f32_to_f16(l.weight_updates_gpu, l.nweights, l.weight_updates_gpu16);
CHECK_CUDNN(cudnnConvolutionBackwardFilter(cudnn_handle(),
&one,
l.srcTensorDesc16,
input16, //state.input,
l.ddstTensorDesc16,
delta16, //l.delta_gpu,
l.convDesc,
l.bf_algo16,
state.workspace,
l.workspace_size,
&one,
l.dweightDesc16,
l.weight_updates_gpu16)); // l.weight_updates_gpu);
cuda_convert_f16_to_f32(l.weight_updates_gpu16, l.nweights, l.weight_updates_gpu);
if (state.delta) {
if (l.binary || l.xnor) swap_binary(&l);
// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
// calculate delta for the next layer
// convert input: l.weights_gpu (w), l.delta_gpu (dy) from fp32 to fp16
// get output: state.delta (dx) and convert it to fp32 (ONLY if it is fp16)
CHECK_CUDNN(cudnnConvolutionBackwardData(cudnn_handle(),
&alpha,
l.weightDesc16,
l.weights_gpu16, //l.weights_gpu,
l.ddstTensorDesc16,
delta16, //l.delta_gpu,
l.convDesc,
l.bd_algo16,
state.workspace,
l.workspace_size,
&beta,
l.dsrcTensorDesc16,
input16)); // state.delta);
cuda_convert_f16_to_f32(input16, input16_size, state.delta);
if (l.binary || l.xnor) swap_binary(&l);
if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
}
}
else {
//#else // CUDNN_HALF
if(l.batch_normalize){
backward_batchnorm_layer_gpu(l, state);
}
// calculate conv weight updates
// if used: beta=1 then loss decreases faster
CHECK_CUDNN(cudnnConvolutionBackwardFilter(cudnn_handle(),
&one,
l.srcTensorDesc,
state.input,
l.ddstTensorDesc,
l.delta_gpu,
l.convDesc,
l.bf_algo,
state.workspace,
l.workspace_size,
&one,
l.dweightDesc,
l.weight_updates_gpu));
if (state.delta) {
if (l.binary || l.xnor) swap_binary(&l);
// http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData
// calculate delta for the next layer
CHECK_CUDNN(cudnnConvolutionBackwardData(cudnn_handle(),
&one,
l.weightDesc,
l.weights_gpu,
l.ddstTensorDesc,
l.delta_gpu,
l.convDesc,
l.bd_algo,
state.workspace,
l.workspace_size,
&one,
l.dsrcTensorDesc,
state.delta));
if (l.binary || l.xnor) swap_binary(&l);
if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta);
}
}
//#endif // CUDNN_HALF
#else // CUDNN
if (l.batch_normalize) {
backward_batchnorm_layer_gpu(l, state);
}
int m = l.n / l.groups;
int n = l.size*l.size*l.c / l.groups;
int k = l.out_w*l.out_h;
int i, j;
for(i = 0; i < l.batch; ++i){
for (j = 0; j < l.groups; ++j) {
float * a = l.delta_gpu + (i*l.groups + j)*m*k;
float * b = state.workspace;
float * c = l.weight_updates_gpu + j*l.nweights / l.groups;
float *im = state.input + (i*l.groups + j)*l.c / l.groups*l.h*l.w;
//im2col_ongpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, state.workspace);
im2col_gpu_ext(im, // input
l.c / l.groups, // input channels
l.h, l.w, // input size (h, w)
l.size, l.size, // kernel size (h, w)
l.pad, l.pad, // padding (h, w)
l.stride_y, l.stride_x, // stride (h, w)
l.dilation, l.dilation, // dilation (h, w)
state.workspace); // output
//gemm_ongpu(0, 1, m, n, k, 1, a + i*m*k, k, b, k, 1, c, n);
gemm_ongpu(0, 1, m, n, k, 1, a, k, b, k, 1, c, n);
if (state.delta) {
if (l.binary || l.xnor) swap_binary(&l);
float * a = l.weights_gpu + j*l.nweights / l.groups;
float * b = l.delta_gpu + (i*l.groups + j)*m*k;
float * c = state.workspace;
//gemm_ongpu(1, 0, n, k, m, 1, a, n, b + i*k*m, k, 0, c, k);
gemm_ongpu(1, 0, n, k, m, 1, a, n, b, k, 0, c, k);
float *delta = state.delta + (i*l.groups + j)*l.c / l.groups*l.h*l.w;
//col2im_ongpu(state.workspace, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, delta);
col2im_gpu_ext(
state.workspace, // input
l.c / l.groups, // input channels
l.h, l.w, // input size (h, w)
l.size, l.size, // kernel size (h, w)
l.pad, l.pad, // padding size (h, w)
l.stride_y, l.stride_x, // stride size (h, w)
l.dilation, l.dilation, // dilation size (h, w)
delta); // output (delta)
if (l.binary || l.xnor) {
swap_binary(&l);
}
if (l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w);
}
}
}
#endif
if (state.net.try_fix_nan) {
if (state.delta) {
fix_nan_and_inf(state.delta, l.inputs * l.batch);
}
int size = l.nweights;
fix_nan_and_inf(l.weight_updates_gpu, size);
fix_nan_and_inf(l.weights_gpu, size);
}
}
__global__ void calc_avg_activation_kernel(float *src, float *dst, int size, int channels, int batches)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int xy = i % size;
int b = i / size;
if (i < size*batches) {
dst[i] = 0;
for (int c = 0; c < channels; ++c) {
dst[i] += src[xy + size*(c + channels*b)];
}
dst[i] = dst[i] / channels;
}
}
void calc_avg_activation_gpu(float *src, float *dst, int size, int channels, int batches)
{
const int num_blocks = get_number_of_blocks(size*batches, BLOCK);
calc_avg_activation_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (src, dst, size, channels, batches);
}
__global__ void assisted_activation_kernel(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int xy = i % size;
int b = i / size;
if (b < batches) {
for (int c = 0; c < channels; ++c) {
output[xy + size*(c + channels*b)] += alpha * gt_gpu[i] * a_avg_gpu[i];
//output[xy + size*(c + channels*b)] += gt_gpu[i] * a_avg_gpu[i];
//output[xy + size*(c + channels*b)] += gt_gpu[i] * output[xy + size*(c + channels*b)];
//output[xy + size*(c + channels*b)] = a_avg_gpu[i];
}
}
}
void assisted_activation_gpu(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches)
{
const int num_blocks = get_number_of_blocks(size*batches, BLOCK);
assisted_activation_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (alpha, output, gt_gpu, a_avg_gpu, size, channels, batches);
}
__global__ void assisted_activation2_kernel(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int xy = i % size;
int b = i / size;
float beta = 1 - alpha;
if (b < batches) {
for (int c = 0; c < channels; ++c) {
if(gt_gpu[i] == 0)
output[xy + size*(c + channels*b)] *= beta;
}
}
}
void assisted_activation2_gpu(float alpha, float *output, float *gt_gpu, float *a_avg_gpu, int size, int channels, int batches)
{
const int num_blocks = get_number_of_blocks(size*batches, BLOCK);
assisted_activation2_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> > (alpha, output, gt_gpu, a_avg_gpu, size, channels, batches);
}
void assisted_excitation_forward_gpu(convolutional_layer l, network_state state)
{
const int iteration_num = (*state.net.seen) / (state.net.batch*state.net.subdivisions);
// epoch
//const float epoch = (float)(*state.net.seen) / state.net.train_images_num;
// calculate alpha
//const float alpha = (1 + cos(3.141592 * iteration_num)) / (2 * state.net.max_batches);
//const float alpha = (1 + cos(3.141592 * epoch)) / (2 * state.net.max_batches);
float alpha = (1 + cos(3.141592 * iteration_num / state.net.max_batches)) / 2;
//float alpha = (1 + cos(3.141592 * iteration_num / state.net.max_batches));
if (l.assisted_excitation == 1) {
if (iteration_num > state.net.max_batches / 2) return;
}
else {
if (iteration_num < state.net.burn_in) return;
else
if (iteration_num > l.assisted_excitation) return;
else
alpha = (1 + cos(3.141592 * iteration_num / (state.net.burn_in + l.assisted_excitation))) / 2; // from 1 to 0
}
//printf("\n epoch = %f, alpha = %f, seen = %d, max_batches = %d, train_images_num = %d \n",
// epoch, alpha, (*state.net.seen), state.net.max_batches, state.net.train_images_num);
//const int size = l.outputs * l.batch;
float *a_avg = (float *)calloc(l.out_w * l.out_h * l.batch, sizeof(float));
float *gt = (float *)calloc(l.out_w * l.out_h * l.batch, sizeof(float));
int b;
int w, h;
l.max_boxes = state.net.num_boxes;
l.truths = l.max_boxes*(4 + 1);
int num_truth = l.batch*l.truths;
float *truth_cpu = (float *)calloc(num_truth, sizeof(float));
cuda_pull_array(state.truth, truth_cpu, num_truth);
//cudaStreamSynchronize(get_cuda_stream());
//CHECK_CUDA(cudaPeekAtLastError());
for (b = 0; b < l.batch; ++b)
{
// calculate G
int t;
for (t = 0; t < state.net.num_boxes; ++t) {
box truth = float_to_box_stride(truth_cpu + t*(4 + 1) + b*l.truths, 1);
if (!truth.x) break; // continue;
float beta = 0;
//float beta = 1 - alpha; // from 0 to 1
float dw = (1 - truth.w) * beta;
float dh = (1 - truth.h) * beta;
//printf(" alpha = %f, beta = %f, truth.w = %f, dw = %f, tw+dw = %f, l.out_w = %d \n", alpha, beta, truth.w, dw, truth.w+dw, l.out_w);
int left = floor((truth.x - (dw + truth.w) / 2) * l.out_w);
int right = ceil((truth.x + (dw + truth.w) / 2) * l.out_w);
int top = floor((truth.y - (dh + truth.h) / 2) * l.out_h);
int bottom = ceil((truth.y + (dh + truth.h) / 2) * l.out_h);
if (left < 0) left = 0;
if (top < 0) top = 0;
if (right > l.out_w) right = l.out_w;
if (bottom > l.out_h) bottom = l.out_h;
for (w = left; w <= right; w++) {
for (h = top; h < bottom; h++) {
gt[w + l.out_w * h + l.out_w*l.out_h*b] = 1;
}
}
}
}
cuda_push_array(l.gt_gpu, gt, l.out_w * l.out_h * l.batch);
//cudaStreamSynchronize(get_cuda_stream());
//CHECK_CUDA(cudaPeekAtLastError());
// calc avg_output on GPU - for whole batch
calc_avg_activation_gpu(l.output_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch);
//cudaStreamSynchronize(get_cuda_stream());
//CHECK_CUDA(cudaPeekAtLastError());
// calc new output
//assisted_activation2_gpu(1, l.output_gpu, l.gt_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch); // AE3: gt increases (beta = 1 - alpha = 0)
//assisted_activation2_gpu(alpha, l.output_gpu, l.gt_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch);
assisted_activation_gpu(alpha, l.output_gpu, l.gt_gpu, l.a_avg_gpu, l.out_w * l.out_h, l.out_c, l.batch);
//cudaStreamSynchronize(get_cuda_stream());
//CHECK_CUDA(cudaPeekAtLastError());
/*
for (b = 0; b < l.batch; ++b)
{
// calculate average A
for (w = 0; w < l.out_w; w++) {
for (h = 0; h < l.out_h; h++) {
for (c = 0; c < l.out_c; c++) {
a_avg[w + l.out_w*(h + l.out_h*b)] += l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))];
}
a_avg[w + l.out_w*(h + l.out_h*b)] /= l.out_c; // a_avg / d
}
}
}
// change activation
for (b = 0; b < l.batch; ++b)
{
for (w = 0; w < l.out_w; w++) {
for (h = 0; h < l.out_h; h++) {
for (c = 0; c < l.out_c; c++)
{
// a = a + alpha(t) + e(c,i,j) = a + alpha(t) + g(i,j) * avg_a(i,j) / channels
l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] +=
alpha *
g[w + l.out_w*(h + l.out_h*b)] *
a_avg[w + l.out_w*(h + l.out_h*b)];
//l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] =
// alpha * g[w + l.out_w*(h + l.out_h*b)] * a_avg[w + l.out_w*(h + l.out_h*b)];
}
}
}
}
*/
if (0) // visualize ground truth
{
#ifdef OPENCV
cuda_pull_array(l.output_gpu, l.output, l.outputs * l.batch);
cudaStreamSynchronize(get_cuda_stream());
CHECK_CUDA(cudaPeekAtLastError());
for (b = 0; b < l.batch; ++b)
{
printf(" Assisted Excitation alpha = %f \n", alpha);
image img = float_to_image(l.out_w, l.out_h, 1, &gt[l.out_w*l.out_h*b]);
char buff[100];
sprintf(buff, "a_excitation_gt_%d", b);
show_image_cv(img, buff);
//image img2 = float_to_image(l.out_w, l.out_h, 1, &l.output[l.out_w*l.out_h*l.out_c*b]);
image img2 = float_to_image_scaled(l.out_w, l.out_h, 1, &l.output[l.out_w*l.out_h*l.out_c*b]);
char buff2[100];
sprintf(buff2, "a_excitation_output_%d", b);
show_image_cv(img2, buff2);
/*
int c = l.out_c;
if (c > 4) c = 4;
image img3 = float_to_image(l.out_w, l.out_h, c, &l.output[l.out_w*l.out_h*l.out_c*b]);
image dc = collapse_image_layers(img3, 1);
char buff3[100];
sprintf(buff3, "a_excitation_act_collapsed_%d", b);
show_image_cv(dc, buff3);
*/
wait_key_cv(5);
}
wait_until_press_key_cv();
#endif // OPENCV
}
free(truth_cpu);
free(gt);
free(a_avg);
}
void pull_convolutional_layer(convolutional_layer l)
{
cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights);
cuda_pull_array_async(l.biases_gpu, l.biases, l.n);
cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights);
cuda_pull_array_async(l.bias_updates_gpu, l.bias_updates, l.n);
if (l.batch_normalize){
cuda_pull_array_async(l.scales_gpu, l.scales, l.n);
cuda_pull_array_async(l.rolling_mean_gpu, l.rolling_mean, l.n);
cuda_pull_array_async(l.rolling_variance_gpu, l.rolling_variance, l.n);
}
if (l.adam){
cuda_pull_array_async(l.m_gpu, l.m, l.nweights);
cuda_pull_array_async(l.v_gpu, l.v, l.nweights);
}
CHECK_CUDA(cudaPeekAtLastError());
cudaStreamSynchronize(get_cuda_stream());
}
void push_convolutional_layer(convolutional_layer l)
{
cuda_push_array(l.weights_gpu, l.weights, l.nweights);
#ifdef CUDNN_HALF
assert(l.nweights > 0);
cuda_convert_f32_to_f16(l.weights_gpu, l.nweights, l.weights_gpu16);
#endif
cuda_push_array(l.biases_gpu, l.biases, l.n);
if (l.train) {
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.nweights);
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n);
}
if (l.batch_normalize){
cuda_push_array(l.scales_gpu, l.scales, l.n);
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.n);
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.n);
}
if (l.adam){
cuda_push_array(l.m_gpu, l.m, l.nweights);
cuda_push_array(l.v_gpu, l.v, l.nweights);
}
CHECK_CUDA(cudaPeekAtLastError());
}
void update_convolutional_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay)
{
/*
for (int angle = 0; angle < 360; angle++) {
printf(" angle = %d \n", angle);
smooth_rotate_weights_kernel(l.weights_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, angle, 0);
cuda_pull_array(l.weight_deform_gpu, l.weights, l.nweights);
visualize_convolutional_layer(l, "weights", NULL);
wait_key_cv(10);
}
*/
if (l.deform) {
//for (l.angle = 0; l.angle < 360; l.angle += 1)
//{
//stretch_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, l.angle/180, 1);
//else simple_copy_ongpu(l.nweights, l.weight_updates_gpu, l.weight_deform_gpu);
if (l.rotate) rotate_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, 1);
else if (l.sway) sway_and_flip_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, l.angle, 1);
else if (l.stretch) stretch_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, 0, 1);
else if (l.stretch_sway) stretch_sway_flip_weights_gpu(l.weight_updates_gpu, l.weight_deform_gpu, l.nweights, l.n, l.size, l.angle, 1);
//simple_copy_ongpu(l.nweights, l.weight_updates_gpu, l.weight_deform_gpu);
reduce_and_expand_array_gpu(l.weight_deform_gpu, l.weight_updates_gpu, l.nweights, 4);
//printf(" angle = %f \n", l.angle);
//cuda_pull_array(l.weight_deform_gpu, l.weights, l.nweights);
//visualize_convolutional_layer(l, "weights", NULL);
//wait_key_cv(10);
//}
}
float learning_rate = learning_rate_init*l.learning_rate_scale;
//float momentum = a.momentum;
//float decay = a.decay;
//int batch = a.batch;
fix_nan_and_inf(l.weight_updates_gpu, l.nweights);
fix_nan_and_inf(l.weights_gpu, l.nweights);
if (l.adam) {
//adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.nweights, batch, a.t);
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.nweights, batch, l.t);
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t);
if (l.scales_gpu) {
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t);
}
}
else {
//axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
//axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
//scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1);
axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1);
axpy_ongpu(l.n, learning_rate / batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
scal_ongpu(l.n, momentum, l.bias_updates_gpu, 1);
if (l.scales_gpu) {
axpy_ongpu(l.n, learning_rate / batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
scal_ongpu(l.n, momentum, l.scale_updates_gpu, 1);
}
}
if (l.deform) {
//for (l.angle = 0; l.angle < 360; l.angle += 4)
//{
expand_array_gpu(l.weights_gpu, l.weight_deform_gpu, l.nweights, 4);
//simple_copy_ongpu(l.nweights, l.weight_deform_gpu, l.weights_gpu);
if (l.rotate) rotate_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, 0);
else if (l.sway) sway_and_flip_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, l.angle, 0);
else if (l.stretch) stretch_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, 0, 0);
else if (l.stretch_sway) stretch_sway_flip_weights_gpu(l.weight_deform_gpu, l.weights_gpu, l.nweights, l.n, l.size, l.angle, 0);
//printf(" angle = %f, reverse = %d \n", l.angle, 0);
//cuda_pull_array(l.weights_gpu, l.weights, l.nweights);
//visualize_convolutional_layer(l, "weights", NULL);
//wait_key_cv(10);
//}
}
//if (l.clip) {
// constrain_gpu(l.nweights, l.clip, l.weights_gpu, 1);
//}
}
/*
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
{
int size = layer.size*layer.size*layer.c*layer.n;
axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1);
scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1);
if(layer.scales_gpu){
axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1);
scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1);
}
if(layer.adam){
scal_ongpu(size, layer.B1, layer.m_gpu, 1);
scal_ongpu(size, layer.B2, layer.v_gpu, 1);
axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1);
axpy_ongpu(size, -(1-layer.B1), layer.weight_updates_gpu, 1, layer.m_gpu, 1);
mul_ongpu(size, layer.weight_updates_gpu, 1, layer.weight_updates_gpu, 1);
axpy_ongpu(size, (1-layer.B2), layer.weight_updates_gpu, 1, layer.v_gpu, 1);
adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate/batch, layer.eps, layer.t+1);
fill_ongpu(size, 0, layer.weight_updates_gpu, 1);
}else{
axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); // wu = wu - w*decay*batch
axpy_ongpu(size, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); // w = w + wu*lr/batch
scal_ongpu(size, momentum, layer.weight_updates_gpu, 1); // wu = wu*momentum // wu = (wu - w*decay*batch)*momentum
// w = w + (wu - w*decay*batch)*lr/batch = w + wu*lr/batch - w*decay*lr = w*(1-decay*lr) + wu*lr/batch
//wu_prev = (wu_old - w_old*decay*batch)*momentum
//weights_update = weights_update_new + (weights_update_old - weights_old*decay*batch)*momentum - weights_new*decay*batch =
// = weights_update_new + weights_update_old*momentum - weights_old*decay*batch*momentum - weights_new*decay*batch
// = weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch
//------------- RESULT --------------
// weights_update = weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch
//-----------------------------------
// weights_newest = weights_new + (weights_update_new + weights_update_old*momentum - (weights_old*momentum + weights_new)*decay*batch)*lr/batch
// = weights_new + weights_update_new*lr/batch + weights_update_old*momentum*lr/batch - weights_old*momentum*decay*batch*lr/batch - weights_new*decay*batch*lr/batch
// = weights_new + weights_update_new*lr/batch + weights_update_old*momentum*lr/batch - weights_old*momentum*decay*lr - weights_new*decay*lr
// = weights_new*(1 - decay*lr) - weights_old*momentum*decay*lr + (weights_update_new + weights_update_old*momentum)*lr/batch
//------------- RESULT --------------
// weights_newest = weights_new*(1 - decay*lr) - weights_old*momentum*(decay*lr) + (weights_update_new + weights_update_old*momentum)*lr/batch =
// = weights_new - (weights_new + weights_old*momentum)*decay*lr + (weights_update_new + weights_update_old*momentum)*lr / batch
//-----------------------------------
}
}
*/