mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
336 lines
9.0 KiB
336 lines
9.0 KiB
#include "blas.h" |
|
|
|
#include <math.h> |
|
#include <assert.h> |
|
#include <float.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
void reorg_cpu(float *x, int out_w, int out_h, int out_c, int batch, int stride, int forward, float *out) |
|
{ |
|
int b,i,j,k; |
|
int in_c = out_c/(stride*stride); |
|
|
|
//printf("\n out_c = %d, out_w = %d, out_h = %d, stride = %d, forward = %d \n", out_c, out_w, out_h, stride, forward); |
|
//printf(" in_c = %d, in_w = %d, in_h = %d \n", in_c, out_w*stride, out_h*stride); |
|
|
|
for(b = 0; b < batch; ++b){ |
|
for(k = 0; k < out_c; ++k){ |
|
for(j = 0; j < out_h; ++j){ |
|
for(i = 0; i < out_w; ++i){ |
|
int in_index = i + out_w*(j + out_h*(k + out_c*b)); |
|
int c2 = k % in_c; |
|
int offset = k / in_c; |
|
int w2 = i*stride + offset % stride; |
|
int h2 = j*stride + offset / stride; |
|
int out_index = w2 + out_w*stride*(h2 + out_h*stride*(c2 + in_c*b)); |
|
if(forward) out[out_index] = x[in_index]; // used by default for forward (i.e. forward = 0) |
|
else out[in_index] = x[out_index]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void flatten(float *x, int size, int layers, int batch, int forward) |
|
{ |
|
float* swap = (float*)calloc(size * layers * batch, sizeof(float)); |
|
int i,c,b; |
|
for(b = 0; b < batch; ++b){ |
|
for(c = 0; c < layers; ++c){ |
|
for(i = 0; i < size; ++i){ |
|
int i1 = b*layers*size + c*size + i; |
|
int i2 = b*layers*size + i*layers + c; |
|
if (forward) swap[i2] = x[i1]; |
|
else swap[i1] = x[i2]; |
|
} |
|
} |
|
} |
|
memcpy(x, swap, size*layers*batch*sizeof(float)); |
|
free(swap); |
|
} |
|
|
|
void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); |
|
} |
|
} |
|
|
|
void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
if(da) da[i] += dc[i] * s[i]; |
|
if(db) db[i] += dc[i] * (1-s[i]); |
|
ds[i] += dc[i] * (a[i] - b[i]); |
|
} |
|
} |
|
|
|
void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) |
|
{ |
|
int stride = w1/w2; |
|
int sample = w2/w1; |
|
assert(stride == h1/h2); |
|
assert(sample == h2/h1); |
|
if(stride < 1) stride = 1; |
|
if(sample < 1) sample = 1; |
|
int minw = (w1 < w2) ? w1 : w2; |
|
int minh = (h1 < h2) ? h1 : h2; |
|
int minc = (c1 < c2) ? c1 : c2; |
|
|
|
int i,j,k,b; |
|
for(b = 0; b < batch; ++b){ |
|
for(k = 0; k < minc; ++k){ |
|
for(j = 0; j < minh; ++j){ |
|
for(i = 0; i < minw; ++i){ |
|
int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); |
|
int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); |
|
out[out_index] += add[add_index]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void mean_cpu(float *x, int batch, int filters, int spatial, float *mean) |
|
{ |
|
float scale = 1./(batch * spatial); |
|
int i,j,k; |
|
for(i = 0; i < filters; ++i){ |
|
mean[i] = 0; |
|
for(j = 0; j < batch; ++j){ |
|
for(k = 0; k < spatial; ++k){ |
|
int index = j*filters*spatial + i*spatial + k; |
|
mean[i] += x[index]; |
|
} |
|
} |
|
mean[i] *= scale; |
|
} |
|
} |
|
|
|
void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) |
|
{ |
|
float scale = 1./(batch * spatial - 1); |
|
int i,j,k; |
|
for(i = 0; i < filters; ++i){ |
|
variance[i] = 0; |
|
for(j = 0; j < batch; ++j){ |
|
for(k = 0; k < spatial; ++k){ |
|
int index = j*filters*spatial + i*spatial + k; |
|
variance[i] += pow((x[index] - mean[i]), 2); |
|
} |
|
} |
|
variance[i] *= scale; |
|
} |
|
} |
|
|
|
void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) |
|
{ |
|
int b, f, i; |
|
for(b = 0; b < batch; ++b){ |
|
for(f = 0; f < filters; ++f){ |
|
for(i = 0; i < spatial; ++i){ |
|
int index = b*filters*spatial + f*spatial + i; |
|
x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void const_cpu(int N, float ALPHA, float *X, int INCX) |
|
{ |
|
int i; |
|
for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; |
|
} |
|
|
|
void mul_cpu(int N, float *X, int INCX, float *Y, int INCY) |
|
{ |
|
int i; |
|
for(i = 0; i < N; ++i) Y[i*INCY] *= X[i*INCX]; |
|
} |
|
|
|
void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) |
|
{ |
|
int i; |
|
for(i = 0; i < N; ++i) Y[i*INCY] = pow(X[i*INCX], ALPHA); |
|
} |
|
|
|
void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) |
|
{ |
|
int i; |
|
for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX]; |
|
} |
|
|
|
void scal_cpu(int N, float ALPHA, float *X, int INCX) |
|
{ |
|
int i; |
|
for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA; |
|
} |
|
|
|
void fill_cpu(int N, float ALPHA, float *X, int INCX) |
|
{ |
|
int i; |
|
if (INCX == 1 && ALPHA == 0) { |
|
memset(X, 0, N * sizeof(float)); |
|
} |
|
else { |
|
for (i = 0; i < N; ++i) X[i*INCX] = ALPHA; |
|
} |
|
} |
|
|
|
void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) |
|
{ |
|
int i, j; |
|
int index = 0; |
|
for(j = 0; j < B; ++j) { |
|
for(i = 0; i < NX; ++i){ |
|
if(X) X[j*NX + i] += OUT[index]; |
|
++index; |
|
} |
|
for(i = 0; i < NY; ++i){ |
|
if(Y) Y[j*NY + i] += OUT[index]; |
|
++index; |
|
} |
|
} |
|
} |
|
|
|
void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) |
|
{ |
|
int i, j; |
|
int index = 0; |
|
for(j = 0; j < B; ++j) { |
|
for(i = 0; i < NX; ++i){ |
|
OUT[index++] = X[j*NX + i]; |
|
} |
|
for(i = 0; i < NY; ++i){ |
|
OUT[index++] = Y[j*NY + i]; |
|
} |
|
} |
|
} |
|
|
|
void copy_cpu(int N, float *X, int INCX, float *Y, int INCY) |
|
{ |
|
int i; |
|
for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX]; |
|
} |
|
|
|
void mult_add_into_cpu(int N, float *X, float *Y, float *Z) |
|
{ |
|
int i; |
|
for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i]; |
|
} |
|
|
|
void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
float diff = truth[i] - pred[i]; |
|
float abs_val = fabs(diff); |
|
if(abs_val < 1) { |
|
error[i] = diff * diff; |
|
delta[i] = diff; |
|
} |
|
else { |
|
error[i] = 2*abs_val - 1; |
|
delta[i] = (diff > 0) ? 1 : -1; |
|
} |
|
} |
|
} |
|
|
|
void l1_cpu(int n, float *pred, float *truth, float *delta, float *error) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
float diff = truth[i] - pred[i]; |
|
error[i] = fabs(diff); |
|
delta[i] = diff > 0 ? 1 : -1; |
|
} |
|
} |
|
|
|
void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
float t = truth[i]; |
|
float p = pred[i]; |
|
error[i] = (t) ? -log(p) : 0; |
|
delta[i] = t-p; |
|
} |
|
} |
|
|
|
void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
float t = truth[i]; |
|
float p = pred[i]; |
|
error[i] = -t*log(p) - (1-t)*log(1-p); |
|
delta[i] = t-p; |
|
} |
|
} |
|
|
|
void l2_cpu(int n, float *pred, float *truth, float *delta, float *error) |
|
{ |
|
int i; |
|
for(i = 0; i < n; ++i){ |
|
float diff = truth[i] - pred[i]; |
|
error[i] = diff * diff; |
|
delta[i] = diff; |
|
} |
|
} |
|
|
|
float dot_cpu(int N, float *X, int INCX, float *Y, int INCY) |
|
{ |
|
int i; |
|
float dot = 0; |
|
for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY]; |
|
return dot; |
|
} |
|
|
|
void softmax(float *input, int n, float temp, float *output, int stride) |
|
{ |
|
int i; |
|
float sum = 0; |
|
float largest = -FLT_MAX; |
|
for(i = 0; i < n; ++i){ |
|
if(input[i*stride] > largest) largest = input[i*stride]; |
|
} |
|
for(i = 0; i < n; ++i){ |
|
float e = exp(input[i*stride]/temp - largest/temp); |
|
sum += e; |
|
output[i*stride] = e; |
|
} |
|
for(i = 0; i < n; ++i){ |
|
output[i*stride] /= sum; |
|
} |
|
} |
|
|
|
|
|
void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) |
|
{ |
|
int g, b; |
|
for(b = 0; b < batch; ++b){ |
|
for(g = 0; g < groups; ++g){ |
|
softmax(input + b*batch_offset + g*group_offset, n, temp, output + b*batch_offset + g*group_offset, stride); |
|
} |
|
} |
|
} |
|
|
|
void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) |
|
{ |
|
int i, j, k, b; |
|
for (b = 0; b < batch; ++b) { |
|
for (k = 0; k < c; ++k) { |
|
for (j = 0; j < h*stride; ++j) { |
|
for (i = 0; i < w*stride; ++i) { |
|
int in_index = b*w*h*c + k*w*h + (j / stride)*w + i / stride; |
|
int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i; |
|
if (forward) out[out_index] = scale*in[in_index]; |
|
else in[in_index] += scale*out[out_index]; |
|
} |
|
} |
|
} |
|
} |
|
}
|
|
|