mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
461 lines
15 KiB
461 lines
15 KiB
#include <time.h> |
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
|
|
#include "parser.h" |
|
#include "utils.h" |
|
#include "cuda.h" |
|
#include "blas.h" |
|
#include "connected_layer.h" |
|
|
|
#ifdef OPENCV |
|
#include "opencv2/highgui/highgui_c.h" |
|
#endif |
|
|
|
extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top); |
|
extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int ext_output); |
|
extern void run_voxel(int argc, char **argv); |
|
extern void run_yolo(int argc, char **argv); |
|
extern void run_detector(int argc, char **argv); |
|
extern void run_coco(int argc, char **argv); |
|
extern void run_writing(int argc, char **argv); |
|
extern void run_captcha(int argc, char **argv); |
|
extern void run_nightmare(int argc, char **argv); |
|
extern void run_dice(int argc, char **argv); |
|
extern void run_compare(int argc, char **argv); |
|
extern void run_classifier(int argc, char **argv); |
|
extern void run_char_rnn(int argc, char **argv); |
|
extern void run_vid_rnn(int argc, char **argv); |
|
extern void run_tag(int argc, char **argv); |
|
extern void run_cifar(int argc, char **argv); |
|
extern void run_go(int argc, char **argv); |
|
extern void run_art(int argc, char **argv); |
|
extern void run_super(int argc, char **argv); |
|
|
|
void average(int argc, char *argv[]) |
|
{ |
|
char *cfgfile = argv[2]; |
|
char *outfile = argv[3]; |
|
gpu_index = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
network sum = parse_network_cfg(cfgfile); |
|
|
|
char *weightfile = argv[4]; |
|
load_weights(&sum, weightfile); |
|
|
|
int i, j; |
|
int n = argc - 5; |
|
for(i = 0; i < n; ++i){ |
|
weightfile = argv[i+5]; |
|
load_weights(&net, weightfile); |
|
for(j = 0; j < net.n; ++j){ |
|
layer l = net.layers[j]; |
|
layer out = sum.layers[j]; |
|
if(l.type == CONVOLUTIONAL){ |
|
int num = l.n*l.c*l.size*l.size; |
|
axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1); |
|
axpy_cpu(num, 1, l.weights, 1, out.weights, 1); |
|
if(l.batch_normalize){ |
|
axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1); |
|
axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1); |
|
axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1); |
|
} |
|
} |
|
if(l.type == CONNECTED){ |
|
axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1); |
|
axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1); |
|
} |
|
} |
|
} |
|
n = n+1; |
|
for(j = 0; j < net.n; ++j){ |
|
layer l = sum.layers[j]; |
|
if(l.type == CONVOLUTIONAL){ |
|
int num = l.n*l.c*l.size*l.size; |
|
scal_cpu(l.n, 1./n, l.biases, 1); |
|
scal_cpu(num, 1./n, l.weights, 1); |
|
if(l.batch_normalize){ |
|
scal_cpu(l.n, 1./n, l.scales, 1); |
|
scal_cpu(l.n, 1./n, l.rolling_mean, 1); |
|
scal_cpu(l.n, 1./n, l.rolling_variance, 1); |
|
} |
|
} |
|
if(l.type == CONNECTED){ |
|
scal_cpu(l.outputs, 1./n, l.biases, 1); |
|
scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1); |
|
} |
|
} |
|
save_weights(sum, outfile); |
|
} |
|
|
|
void speed(char *cfgfile, int tics) |
|
{ |
|
if (tics == 0) tics = 1000; |
|
network net = parse_network_cfg(cfgfile); |
|
set_batch_network(&net, 1); |
|
int i; |
|
time_t start = time(0); |
|
image im = make_image(net.w, net.h, net.c); |
|
for(i = 0; i < tics; ++i){ |
|
network_predict(net, im.data); |
|
} |
|
double t = difftime(time(0), start); |
|
printf("\n%d evals, %f Seconds\n", tics, t); |
|
printf("Speed: %f sec/eval\n", t/tics); |
|
printf("Speed: %f Hz\n", tics/t); |
|
} |
|
|
|
void operations(char *cfgfile) |
|
{ |
|
gpu_index = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
int i; |
|
long ops = 0; |
|
for(i = 0; i < net.n; ++i){ |
|
layer l = net.layers[i]; |
|
if(l.type == CONVOLUTIONAL){ |
|
ops += 2l * l.n * l.size*l.size*l.c * l.out_h*l.out_w; |
|
} else if(l.type == CONNECTED){ |
|
ops += 2l * l.inputs * l.outputs; |
|
} |
|
} |
|
printf("Floating Point Operations: %ld\n", ops); |
|
printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.); |
|
} |
|
|
|
void oneoff(char *cfgfile, char *weightfile, char *outfile) |
|
{ |
|
gpu_index = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
int oldn = net.layers[net.n - 2].n; |
|
int c = net.layers[net.n - 2].c; |
|
net.layers[net.n - 2].n = 9372; |
|
net.layers[net.n - 2].biases += 5; |
|
net.layers[net.n - 2].weights += 5*c; |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
net.layers[net.n - 2].biases -= 5; |
|
net.layers[net.n - 2].weights -= 5*c; |
|
net.layers[net.n - 2].n = oldn; |
|
printf("%d\n", oldn); |
|
layer l = net.layers[net.n - 2]; |
|
copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1); |
|
copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1); |
|
copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1); |
|
copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1); |
|
*net.seen = 0; |
|
save_weights(net, outfile); |
|
} |
|
|
|
void partial(char *cfgfile, char *weightfile, char *outfile, int max) |
|
{ |
|
gpu_index = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights_upto(&net, weightfile, max); |
|
} |
|
*net.seen = 0; |
|
save_weights_upto(net, outfile, max); |
|
} |
|
|
|
#include "convolutional_layer.h" |
|
void rescale_net(char *cfgfile, char *weightfile, char *outfile) |
|
{ |
|
gpu_index = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
layer l = net.layers[i]; |
|
if(l.type == CONVOLUTIONAL){ |
|
rescale_weights(l, 2, -.5); |
|
break; |
|
} |
|
} |
|
save_weights(net, outfile); |
|
} |
|
|
|
void rgbgr_net(char *cfgfile, char *weightfile, char *outfile) |
|
{ |
|
gpu_index = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
layer l = net.layers[i]; |
|
if(l.type == CONVOLUTIONAL){ |
|
rgbgr_weights(l); |
|
break; |
|
} |
|
} |
|
save_weights(net, outfile); |
|
} |
|
|
|
void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile) |
|
{ |
|
gpu_index = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
if (weightfile) { |
|
load_weights(&net, weightfile); |
|
} |
|
int i; |
|
for (i = 0; i < net.n; ++i) { |
|
layer l = net.layers[i]; |
|
if (l.type == CONVOLUTIONAL && l.batch_normalize) { |
|
denormalize_convolutional_layer(l); |
|
} |
|
if (l.type == CONNECTED && l.batch_normalize) { |
|
denormalize_connected_layer(l); |
|
} |
|
if (l.type == GRU && l.batch_normalize) { |
|
denormalize_connected_layer(*l.input_z_layer); |
|
denormalize_connected_layer(*l.input_r_layer); |
|
denormalize_connected_layer(*l.input_h_layer); |
|
denormalize_connected_layer(*l.state_z_layer); |
|
denormalize_connected_layer(*l.state_r_layer); |
|
denormalize_connected_layer(*l.state_h_layer); |
|
} |
|
} |
|
save_weights(net, outfile); |
|
} |
|
|
|
layer normalize_layer(layer l, int n) |
|
{ |
|
int j; |
|
l.batch_normalize=1; |
|
l.scales = calloc(n, sizeof(float)); |
|
for(j = 0; j < n; ++j){ |
|
l.scales[j] = 1; |
|
} |
|
l.rolling_mean = calloc(n, sizeof(float)); |
|
l.rolling_variance = calloc(n, sizeof(float)); |
|
return l; |
|
} |
|
|
|
void normalize_net(char *cfgfile, char *weightfile, char *outfile) |
|
{ |
|
gpu_index = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
int i; |
|
for(i = 0; i < net.n; ++i){ |
|
layer l = net.layers[i]; |
|
if(l.type == CONVOLUTIONAL && !l.batch_normalize){ |
|
net.layers[i] = normalize_layer(l, l.n); |
|
} |
|
if (l.type == CONNECTED && !l.batch_normalize) { |
|
net.layers[i] = normalize_layer(l, l.outputs); |
|
} |
|
if (l.type == GRU && l.batch_normalize) { |
|
*l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs); |
|
*l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs); |
|
*l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs); |
|
*l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs); |
|
*l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs); |
|
*l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs); |
|
net.layers[i].batch_normalize=1; |
|
} |
|
} |
|
save_weights(net, outfile); |
|
} |
|
|
|
void statistics_net(char *cfgfile, char *weightfile) |
|
{ |
|
gpu_index = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
if (weightfile) { |
|
load_weights(&net, weightfile); |
|
} |
|
int i; |
|
for (i = 0; i < net.n; ++i) { |
|
layer l = net.layers[i]; |
|
if (l.type == CONNECTED && l.batch_normalize) { |
|
printf("Connected Layer %d\n", i); |
|
statistics_connected_layer(l); |
|
} |
|
if (l.type == GRU && l.batch_normalize) { |
|
printf("GRU Layer %d\n", i); |
|
printf("Input Z\n"); |
|
statistics_connected_layer(*l.input_z_layer); |
|
printf("Input R\n"); |
|
statistics_connected_layer(*l.input_r_layer); |
|
printf("Input H\n"); |
|
statistics_connected_layer(*l.input_h_layer); |
|
printf("State Z\n"); |
|
statistics_connected_layer(*l.state_z_layer); |
|
printf("State R\n"); |
|
statistics_connected_layer(*l.state_r_layer); |
|
printf("State H\n"); |
|
statistics_connected_layer(*l.state_h_layer); |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
|
|
void denormalize_net(char *cfgfile, char *weightfile, char *outfile) |
|
{ |
|
gpu_index = -1; |
|
network net = parse_network_cfg(cfgfile); |
|
if (weightfile) { |
|
load_weights(&net, weightfile); |
|
} |
|
int i; |
|
for (i = 0; i < net.n; ++i) { |
|
layer l = net.layers[i]; |
|
if (l.type == CONVOLUTIONAL && l.batch_normalize) { |
|
denormalize_convolutional_layer(l); |
|
net.layers[i].batch_normalize=0; |
|
} |
|
if (l.type == CONNECTED && l.batch_normalize) { |
|
denormalize_connected_layer(l); |
|
net.layers[i].batch_normalize=0; |
|
} |
|
if (l.type == GRU && l.batch_normalize) { |
|
denormalize_connected_layer(*l.input_z_layer); |
|
denormalize_connected_layer(*l.input_r_layer); |
|
denormalize_connected_layer(*l.input_h_layer); |
|
denormalize_connected_layer(*l.state_z_layer); |
|
denormalize_connected_layer(*l.state_r_layer); |
|
denormalize_connected_layer(*l.state_h_layer); |
|
l.input_z_layer->batch_normalize = 0; |
|
l.input_r_layer->batch_normalize = 0; |
|
l.input_h_layer->batch_normalize = 0; |
|
l.state_z_layer->batch_normalize = 0; |
|
l.state_r_layer->batch_normalize = 0; |
|
l.state_h_layer->batch_normalize = 0; |
|
net.layers[i].batch_normalize=0; |
|
} |
|
} |
|
save_weights(net, outfile); |
|
} |
|
|
|
void visualize(char *cfgfile, char *weightfile) |
|
{ |
|
network net = parse_network_cfg(cfgfile); |
|
if(weightfile){ |
|
load_weights(&net, weightfile); |
|
} |
|
visualize_network(net); |
|
#ifdef OPENCV |
|
cvWaitKey(0); |
|
#endif |
|
} |
|
|
|
int main(int argc, char **argv) |
|
{ |
|
#ifdef _DEBUG |
|
_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF); |
|
#endif |
|
|
|
int i; |
|
for (i = 0; i < argc; ++i) { |
|
if (!argv[i]) continue; |
|
strip_args(argv[i]); |
|
} |
|
|
|
//test_resize("data/bad.jpg"); |
|
//test_box(); |
|
//test_convolutional_layer(); |
|
if(argc < 2){ |
|
fprintf(stderr, "usage: %s <function>\n", argv[0]); |
|
return 0; |
|
} |
|
gpu_index = find_int_arg(argc, argv, "-i", 0); |
|
if(find_arg(argc, argv, "-nogpu")) { |
|
gpu_index = -1; |
|
} |
|
|
|
#ifndef GPU |
|
gpu_index = -1; |
|
#else |
|
if(gpu_index >= 0){ |
|
cuda_set_device(gpu_index); |
|
} |
|
#endif |
|
|
|
if (0 == strcmp(argv[1], "average")){ |
|
average(argc, argv); |
|
} else if (0 == strcmp(argv[1], "yolo")){ |
|
run_yolo(argc, argv); |
|
} else if (0 == strcmp(argv[1], "voxel")){ |
|
run_voxel(argc, argv); |
|
} else if (0 == strcmp(argv[1], "super")){ |
|
run_super(argc, argv); |
|
} else if (0 == strcmp(argv[1], "detector")){ |
|
run_detector(argc, argv); |
|
} else if (0 == strcmp(argv[1], "detect")){ |
|
float thresh = find_float_arg(argc, argv, "-thresh", .24); |
|
int ext_output = find_arg(argc, argv, "-ext_output"); |
|
char *filename = (argc > 4) ? argv[4]: 0; |
|
test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, ext_output); |
|
} else if (0 == strcmp(argv[1], "cifar")){ |
|
run_cifar(argc, argv); |
|
} else if (0 == strcmp(argv[1], "go")){ |
|
run_go(argc, argv); |
|
} else if (0 == strcmp(argv[1], "rnn")){ |
|
run_char_rnn(argc, argv); |
|
} else if (0 == strcmp(argv[1], "vid")){ |
|
run_vid_rnn(argc, argv); |
|
} else if (0 == strcmp(argv[1], "coco")){ |
|
run_coco(argc, argv); |
|
} else if (0 == strcmp(argv[1], "classify")){ |
|
predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5); |
|
} else if (0 == strcmp(argv[1], "classifier")){ |
|
run_classifier(argc, argv); |
|
} else if (0 == strcmp(argv[1], "art")){ |
|
run_art(argc, argv); |
|
} else if (0 == strcmp(argv[1], "tag")){ |
|
run_tag(argc, argv); |
|
} else if (0 == strcmp(argv[1], "compare")){ |
|
run_compare(argc, argv); |
|
} else if (0 == strcmp(argv[1], "dice")){ |
|
run_dice(argc, argv); |
|
} else if (0 == strcmp(argv[1], "writing")){ |
|
run_writing(argc, argv); |
|
} else if (0 == strcmp(argv[1], "3d")){ |
|
composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0); |
|
} else if (0 == strcmp(argv[1], "test")){ |
|
test_resize(argv[2]); |
|
} else if (0 == strcmp(argv[1], "captcha")){ |
|
run_captcha(argc, argv); |
|
} else if (0 == strcmp(argv[1], "nightmare")){ |
|
run_nightmare(argc, argv); |
|
} else if (0 == strcmp(argv[1], "rgbgr")){ |
|
rgbgr_net(argv[2], argv[3], argv[4]); |
|
} else if (0 == strcmp(argv[1], "reset")){ |
|
reset_normalize_net(argv[2], argv[3], argv[4]); |
|
} else if (0 == strcmp(argv[1], "denormalize")){ |
|
denormalize_net(argv[2], argv[3], argv[4]); |
|
} else if (0 == strcmp(argv[1], "statistics")){ |
|
statistics_net(argv[2], argv[3]); |
|
} else if (0 == strcmp(argv[1], "normalize")){ |
|
normalize_net(argv[2], argv[3], argv[4]); |
|
} else if (0 == strcmp(argv[1], "rescale")){ |
|
rescale_net(argv[2], argv[3], argv[4]); |
|
} else if (0 == strcmp(argv[1], "ops")){ |
|
operations(argv[2]); |
|
} else if (0 == strcmp(argv[1], "speed")){ |
|
speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0); |
|
} else if (0 == strcmp(argv[1], "oneoff")){ |
|
oneoff(argv[2], argv[3], argv[4]); |
|
} else if (0 == strcmp(argv[1], "partial")){ |
|
partial(argv[2], argv[3], argv[4], atoi(argv[5])); |
|
} else if (0 == strcmp(argv[1], "average")){ |
|
average(argc, argv); |
|
} else if (0 == strcmp(argv[1], "visualize")){ |
|
visualize(argv[2], (argc > 3) ? argv[3] : 0); |
|
} else if (0 == strcmp(argv[1], "imtest")){ |
|
test_resize(argv[2]); |
|
} else { |
|
fprintf(stderr, "Not an option: %s\n", argv[1]); |
|
} |
|
return 0; |
|
} |
|
|
|
|