mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
158 lines
4.4 KiB
158 lines
4.4 KiB
from ctypes import * |
|
import math |
|
import random |
|
|
|
def sample(probs): |
|
s = sum(probs) |
|
probs = [a/s for a in probs] |
|
r = random.uniform(0, 1) |
|
for i in range(len(probs)): |
|
r = r - probs[i] |
|
if r <= 0: |
|
return i |
|
return len(probs)-1 |
|
|
|
def c_array(ctype, values): |
|
arr = (ctype*len(values))() |
|
arr[:] = values |
|
return arr |
|
|
|
class BOX(Structure): |
|
_fields_ = [("x", c_float), |
|
("y", c_float), |
|
("w", c_float), |
|
("h", c_float)] |
|
|
|
class DETECTION(Structure): |
|
_fields_ = [("bbox", BOX), |
|
("classes", c_int), |
|
("prob", POINTER(c_float)), |
|
("mask", POINTER(c_float)), |
|
("objectness", c_float), |
|
("sort_class", c_int)] |
|
|
|
|
|
class IMAGE(Structure): |
|
_fields_ = [("w", c_int), |
|
("h", c_int), |
|
("c", c_int), |
|
("data", POINTER(c_float))] |
|
|
|
class METADATA(Structure): |
|
_fields_ = [("classes", c_int), |
|
("names", POINTER(c_char_p))] |
|
|
|
|
|
|
|
#lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL) |
|
lib = CDLL("darknet.so", RTLD_GLOBAL) |
|
#lib = CDLL("yolo_cpp_dll.dll", RTLD_GLOBAL) |
|
lib.network_width.argtypes = [c_void_p] |
|
lib.network_width.restype = c_int |
|
lib.network_height.argtypes = [c_void_p] |
|
lib.network_height.restype = c_int |
|
|
|
predict = lib.network_predict |
|
predict.argtypes = [c_void_p, POINTER(c_float)] |
|
predict.restype = POINTER(c_float) |
|
|
|
set_gpu = lib.cuda_set_device |
|
set_gpu.argtypes = [c_int] |
|
|
|
make_image = lib.make_image |
|
make_image.argtypes = [c_int, c_int, c_int] |
|
make_image.restype = IMAGE |
|
|
|
get_network_boxes = lib.get_network_boxes |
|
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int] |
|
get_network_boxes.restype = POINTER(DETECTION) |
|
|
|
make_network_boxes = lib.make_network_boxes |
|
make_network_boxes.argtypes = [c_void_p] |
|
make_network_boxes.restype = POINTER(DETECTION) |
|
|
|
free_detections = lib.free_detections |
|
free_detections.argtypes = [POINTER(DETECTION), c_int] |
|
|
|
free_ptrs = lib.free_ptrs |
|
free_ptrs.argtypes = [POINTER(c_void_p), c_int] |
|
|
|
network_predict = lib.network_predict |
|
network_predict.argtypes = [c_void_p, POINTER(c_float)] |
|
|
|
reset_rnn = lib.reset_rnn |
|
reset_rnn.argtypes = [c_void_p] |
|
|
|
load_net = lib.load_network |
|
load_net.argtypes = [c_char_p, c_char_p, c_int] |
|
load_net.restype = c_void_p |
|
|
|
do_nms_obj = lib.do_nms_obj |
|
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] |
|
|
|
do_nms_sort = lib.do_nms_sort |
|
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] |
|
|
|
free_image = lib.free_image |
|
free_image.argtypes = [IMAGE] |
|
|
|
letterbox_image = lib.letterbox_image |
|
letterbox_image.argtypes = [IMAGE, c_int, c_int] |
|
letterbox_image.restype = IMAGE |
|
|
|
load_meta = lib.get_metadata |
|
lib.get_metadata.argtypes = [c_char_p] |
|
lib.get_metadata.restype = METADATA |
|
|
|
load_image = lib.load_image_color |
|
load_image.argtypes = [c_char_p, c_int, c_int] |
|
load_image.restype = IMAGE |
|
|
|
rgbgr_image = lib.rgbgr_image |
|
rgbgr_image.argtypes = [IMAGE] |
|
|
|
predict_image = lib.network_predict_image |
|
predict_image.argtypes = [c_void_p, IMAGE] |
|
predict_image.restype = POINTER(c_float) |
|
|
|
def classify(net, meta, im): |
|
out = predict_image(net, im) |
|
res = [] |
|
for i in range(meta.classes): |
|
res.append((meta.names[i], out[i])) |
|
res = sorted(res, key=lambda x: -x[1]) |
|
return res |
|
|
|
def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45): |
|
im = load_image(image, 0, 0) |
|
num = c_int(0) |
|
pnum = pointer(num) |
|
predict_image(net, im) |
|
dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum, 1) |
|
num = pnum[0] |
|
#if (nms): do_nms_obj(dets, num, meta.classes, nms); |
|
if (nms): do_nms_sort(dets, num, meta.classes, nms); |
|
|
|
res = [] |
|
for j in range(num): |
|
for i in range(meta.classes): |
|
if dets[j].prob[i] > 0: |
|
b = dets[j].bbox |
|
res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h))) |
|
res = sorted(res, key=lambda x: -x[1]) |
|
free_image(im) |
|
free_detections(dets, num) |
|
return res |
|
|
|
if __name__ == "__main__": |
|
#net = load_net("cfg/densenet201.cfg", "/home/pjreddie/trained/densenet201.weights", 0) |
|
#im = load_image("data/wolf.jpg", 0, 0) |
|
#meta = load_meta("cfg/imagenet1k.data") |
|
#r = classify(net, meta, im) |
|
#print r[:10] |
|
net = load_net("cfg/yolov3.cfg", "yolov3.weights", 0) |
|
meta = load_meta("data/coco.data") |
|
r = detect(net, meta, "data/dog.jpg", 0.25) |
|
print r |
|
|
|
|
|
|