mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2158 lines
64 KiB
2158 lines
64 KiB
#include "darknet.h" |
|
#include "image.h" |
|
#include "utils.h" |
|
#include "blas.h" |
|
#include "cuda.h" |
|
#include <stdio.h> |
|
#include <math.h> |
|
|
|
#define STB_IMAGE_IMPLEMENTATION |
|
#include "stb_image.h" |
|
#define STB_IMAGE_WRITE_IMPLEMENTATION |
|
#include "stb_image_write.h" |
|
|
|
#ifdef OPENCV |
|
#include "opencv2/highgui/highgui_c.h" |
|
#include "opencv2/imgproc/imgproc_c.h" |
|
#include "opencv2/core/types_c.h" |
|
#include "opencv2/core/version.hpp" |
|
#ifndef CV_VERSION_EPOCH |
|
#include "opencv2/videoio/videoio_c.h" |
|
#include "opencv2/imgcodecs/imgcodecs_c.h" |
|
#include "http_stream.h" |
|
#endif |
|
#include "http_stream.h" |
|
|
|
#define CV_RGB(r, g, b) cvScalar( (b), (g), (r), 0 ) |
|
#endif |
|
|
|
extern int check_mistakes; |
|
int windows = 0; |
|
|
|
float colors[6][3] = { {1,0,1}, {0,0,1},{0,1,1},{0,1,0},{1,1,0},{1,0,0} }; |
|
|
|
float get_color(int c, int x, int max) |
|
{ |
|
float ratio = ((float)x/max)*5; |
|
int i = floor(ratio); |
|
int j = ceil(ratio); |
|
ratio -= i; |
|
float r = (1-ratio) * colors[i][c] + ratio*colors[j][c]; |
|
//printf("%f\n", r); |
|
return r; |
|
} |
|
|
|
static float get_pixel(image m, int x, int y, int c) |
|
{ |
|
assert(x < m.w && y < m.h && c < m.c); |
|
return m.data[c*m.h*m.w + y*m.w + x]; |
|
} |
|
static float get_pixel_extend(image m, int x, int y, int c) |
|
{ |
|
if (x < 0 || x >= m.w || y < 0 || y >= m.h) return 0; |
|
/* |
|
if(x < 0) x = 0; |
|
if(x >= m.w) x = m.w-1; |
|
if(y < 0) y = 0; |
|
if(y >= m.h) y = m.h-1; |
|
*/ |
|
if (c < 0 || c >= m.c) return 0; |
|
return get_pixel(m, x, y, c); |
|
} |
|
static void set_pixel(image m, int x, int y, int c, float val) |
|
{ |
|
if (x < 0 || y < 0 || c < 0 || x >= m.w || y >= m.h || c >= m.c) return; |
|
assert(x < m.w && y < m.h && c < m.c); |
|
m.data[c*m.h*m.w + y*m.w + x] = val; |
|
} |
|
static void add_pixel(image m, int x, int y, int c, float val) |
|
{ |
|
assert(x < m.w && y < m.h && c < m.c); |
|
m.data[c*m.h*m.w + y*m.w + x] += val; |
|
} |
|
|
|
void composite_image(image source, image dest, int dx, int dy) |
|
{ |
|
int x,y,k; |
|
for(k = 0; k < source.c; ++k){ |
|
for(y = 0; y < source.h; ++y){ |
|
for(x = 0; x < source.w; ++x){ |
|
float val = get_pixel(source, x, y, k); |
|
float val2 = get_pixel_extend(dest, dx+x, dy+y, k); |
|
set_pixel(dest, dx+x, dy+y, k, val * val2); |
|
} |
|
} |
|
} |
|
} |
|
|
|
image border_image(image a, int border) |
|
{ |
|
image b = make_image(a.w + 2*border, a.h + 2*border, a.c); |
|
int x,y,k; |
|
for(k = 0; k < b.c; ++k){ |
|
for(y = 0; y < b.h; ++y){ |
|
for(x = 0; x < b.w; ++x){ |
|
float val = get_pixel_extend(a, x - border, y - border, k); |
|
if(x - border < 0 || x - border >= a.w || y - border < 0 || y - border >= a.h) val = 1; |
|
set_pixel(b, x, y, k, val); |
|
} |
|
} |
|
} |
|
return b; |
|
} |
|
|
|
image tile_images(image a, image b, int dx) |
|
{ |
|
if(a.w == 0) return copy_image(b); |
|
image c = make_image(a.w + b.w + dx, (a.h > b.h) ? a.h : b.h, (a.c > b.c) ? a.c : b.c); |
|
fill_cpu(c.w*c.h*c.c, 1, c.data, 1); |
|
embed_image(a, c, 0, 0); |
|
composite_image(b, c, a.w + dx, 0); |
|
return c; |
|
} |
|
|
|
image get_label(image **characters, char *string, int size) |
|
{ |
|
if(size > 7) size = 7; |
|
image label = make_empty_image(0,0,0); |
|
while(*string){ |
|
image l = characters[size][(int)*string]; |
|
image n = tile_images(label, l, -size - 1 + (size+1)/2); |
|
free_image(label); |
|
label = n; |
|
++string; |
|
} |
|
image b = border_image(label, label.h*.25); |
|
free_image(label); |
|
return b; |
|
} |
|
|
|
image get_label_v3(image **characters, char *string, int size) |
|
{ |
|
size = size / 10; |
|
if (size > 7) size = 7; |
|
image label = make_empty_image(0, 0, 0); |
|
while (*string) { |
|
image l = characters[size][(int)*string]; |
|
image n = tile_images(label, l, -size - 1 + (size + 1) / 2); |
|
free_image(label); |
|
label = n; |
|
++string; |
|
} |
|
image b = border_image(label, label.h*.25); |
|
free_image(label); |
|
return b; |
|
} |
|
|
|
void draw_label(image a, int r, int c, image label, const float *rgb) |
|
{ |
|
int w = label.w; |
|
int h = label.h; |
|
if (r - h >= 0) r = r - h; |
|
|
|
int i, j, k; |
|
for(j = 0; j < h && j + r < a.h; ++j){ |
|
for(i = 0; i < w && i + c < a.w; ++i){ |
|
for(k = 0; k < label.c; ++k){ |
|
float val = get_pixel(label, i, j, k); |
|
set_pixel(a, i+c, j+r, k, rgb[k] * val); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void draw_box_bw(image a, int x1, int y1, int x2, int y2, float brightness) |
|
{ |
|
//normalize_image(a); |
|
int i; |
|
if (x1 < 0) x1 = 0; |
|
if (x1 >= a.w) x1 = a.w - 1; |
|
if (x2 < 0) x2 = 0; |
|
if (x2 >= a.w) x2 = a.w - 1; |
|
|
|
if (y1 < 0) y1 = 0; |
|
if (y1 >= a.h) y1 = a.h - 1; |
|
if (y2 < 0) y2 = 0; |
|
if (y2 >= a.h) y2 = a.h - 1; |
|
|
|
for (i = x1; i <= x2; ++i) { |
|
a.data[i + y1*a.w + 0 * a.w*a.h] = brightness; |
|
a.data[i + y2*a.w + 0 * a.w*a.h] = brightness; |
|
} |
|
for (i = y1; i <= y2; ++i) { |
|
a.data[x1 + i*a.w + 0 * a.w*a.h] = brightness; |
|
a.data[x2 + i*a.w + 0 * a.w*a.h] = brightness; |
|
} |
|
} |
|
|
|
void draw_box_width_bw(image a, int x1, int y1, int x2, int y2, int w, float brightness) |
|
{ |
|
int i; |
|
for (i = 0; i < w; ++i) { |
|
float alternate_color = (w % 2) ? (brightness) : (1.0 - brightness); |
|
draw_box_bw(a, x1 + i, y1 + i, x2 - i, y2 - i, alternate_color); |
|
} |
|
} |
|
|
|
void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b) |
|
{ |
|
//normalize_image(a); |
|
int i; |
|
if(x1 < 0) x1 = 0; |
|
if(x1 >= a.w) x1 = a.w-1; |
|
if(x2 < 0) x2 = 0; |
|
if(x2 >= a.w) x2 = a.w-1; |
|
|
|
if(y1 < 0) y1 = 0; |
|
if(y1 >= a.h) y1 = a.h-1; |
|
if(y2 < 0) y2 = 0; |
|
if(y2 >= a.h) y2 = a.h-1; |
|
|
|
for(i = x1; i <= x2; ++i){ |
|
a.data[i + y1*a.w + 0*a.w*a.h] = r; |
|
a.data[i + y2*a.w + 0*a.w*a.h] = r; |
|
|
|
a.data[i + y1*a.w + 1*a.w*a.h] = g; |
|
a.data[i + y2*a.w + 1*a.w*a.h] = g; |
|
|
|
a.data[i + y1*a.w + 2*a.w*a.h] = b; |
|
a.data[i + y2*a.w + 2*a.w*a.h] = b; |
|
} |
|
for(i = y1; i <= y2; ++i){ |
|
a.data[x1 + i*a.w + 0*a.w*a.h] = r; |
|
a.data[x2 + i*a.w + 0*a.w*a.h] = r; |
|
|
|
a.data[x1 + i*a.w + 1*a.w*a.h] = g; |
|
a.data[x2 + i*a.w + 1*a.w*a.h] = g; |
|
|
|
a.data[x1 + i*a.w + 2*a.w*a.h] = b; |
|
a.data[x2 + i*a.w + 2*a.w*a.h] = b; |
|
} |
|
} |
|
|
|
void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b) |
|
{ |
|
int i; |
|
for(i = 0; i < w; ++i){ |
|
draw_box(a, x1+i, y1+i, x2-i, y2-i, r, g, b); |
|
} |
|
} |
|
|
|
void draw_bbox(image a, box bbox, int w, float r, float g, float b) |
|
{ |
|
int left = (bbox.x-bbox.w/2)*a.w; |
|
int right = (bbox.x+bbox.w/2)*a.w; |
|
int top = (bbox.y-bbox.h/2)*a.h; |
|
int bot = (bbox.y+bbox.h/2)*a.h; |
|
|
|
int i; |
|
for(i = 0; i < w; ++i){ |
|
draw_box(a, left+i, top+i, right-i, bot-i, r, g, b); |
|
} |
|
} |
|
|
|
image **load_alphabet() |
|
{ |
|
int i, j; |
|
const int nsize = 8; |
|
image **alphabets = calloc(nsize, sizeof(image)); |
|
for(j = 0; j < nsize; ++j){ |
|
alphabets[j] = calloc(128, sizeof(image)); |
|
for(i = 32; i < 127; ++i){ |
|
char buff[256]; |
|
sprintf(buff, "data/labels/%d_%d.png", i, j); |
|
alphabets[j][i] = load_image_color(buff, 0, 0); |
|
} |
|
} |
|
return alphabets; |
|
} |
|
|
|
|
|
|
|
// Creates array of detections with prob > thresh and fills best_class for them |
|
detection_with_class* get_actual_detections(detection *dets, int dets_num, float thresh, int* selected_detections_num, char **names) |
|
{ |
|
int selected_num = 0; |
|
detection_with_class* result_arr = calloc(dets_num, sizeof(detection_with_class)); |
|
int i; |
|
for (i = 0; i < dets_num; ++i) { |
|
int best_class = -1; |
|
float best_class_prob = thresh; |
|
int j; |
|
for (j = 0; j < dets[i].classes; ++j) { |
|
int show = strncmp(names[j], "dont_show", 9); |
|
if (dets[i].prob[j] > best_class_prob && show) { |
|
best_class = j; |
|
best_class_prob = dets[i].prob[j]; |
|
} |
|
} |
|
if (best_class >= 0) { |
|
result_arr[selected_num].det = dets[i]; |
|
result_arr[selected_num].best_class = best_class; |
|
++selected_num; |
|
} |
|
} |
|
if (selected_detections_num) |
|
*selected_detections_num = selected_num; |
|
return result_arr; |
|
} |
|
|
|
// compare to sort detection** by bbox.x |
|
int compare_by_lefts(const void *a_ptr, const void *b_ptr) { |
|
const detection_with_class* a = (detection_with_class*)a_ptr; |
|
const detection_with_class* b = (detection_with_class*)b_ptr; |
|
const float delta = (a->det.bbox.x - a->det.bbox.w/2) - (b->det.bbox.x - b->det.bbox.w/2); |
|
return delta < 0 ? -1 : delta > 0 ? 1 : 0; |
|
} |
|
|
|
// compare to sort detection** by best_class probability |
|
int compare_by_probs(const void *a_ptr, const void *b_ptr) { |
|
const detection_with_class* a = (detection_with_class*)a_ptr; |
|
const detection_with_class* b = (detection_with_class*)b_ptr; |
|
float delta = a->det.prob[a->best_class] - b->det.prob[b->best_class]; |
|
return delta < 0 ? -1 : delta > 0 ? 1 : 0; |
|
} |
|
|
|
void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output) |
|
{ |
|
static int frame_id = 0; |
|
frame_id++; |
|
|
|
int selected_detections_num; |
|
detection_with_class* selected_detections = get_actual_detections(dets, num, thresh, &selected_detections_num, names); |
|
|
|
// text output |
|
qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_lefts); |
|
int i; |
|
for (i = 0; i < selected_detections_num; ++i) { |
|
const int best_class = selected_detections[i].best_class; |
|
printf("%s: %.0f%%", names[best_class], selected_detections[i].det.prob[best_class] * 100); |
|
if (ext_output) |
|
printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n", |
|
round((selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w), |
|
round((selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h), |
|
round(selected_detections[i].det.bbox.w*im.w), round(selected_detections[i].det.bbox.h*im.h)); |
|
else |
|
printf("\n"); |
|
int j; |
|
for (j = 0; j < classes; ++j) { |
|
if (selected_detections[i].det.prob[j] > thresh && j != best_class) { |
|
printf("%s: %.0f%%\n", names[j], selected_detections[i].det.prob[j] * 100); |
|
} |
|
} |
|
} |
|
|
|
// image output |
|
qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_probs); |
|
for (i = 0; i < selected_detections_num; ++i) { |
|
int width = im.h * .006; |
|
if (width < 1) |
|
width = 1; |
|
|
|
/* |
|
if(0){ |
|
width = pow(prob, 1./2.)*10+1; |
|
alphabet = 0; |
|
} |
|
*/ |
|
|
|
//printf("%d %s: %.0f%%\n", i, names[selected_detections[i].best_class], prob*100); |
|
int offset = selected_detections[i].best_class * 123457 % classes; |
|
float red = get_color(2, offset, classes); |
|
float green = get_color(1, offset, classes); |
|
float blue = get_color(0, offset, classes); |
|
float rgb[3]; |
|
|
|
//width = prob*20+2; |
|
|
|
rgb[0] = red; |
|
rgb[1] = green; |
|
rgb[2] = blue; |
|
box b = selected_detections[i].det.bbox; |
|
//printf("%f %f %f %f\n", b.x, b.y, b.w, b.h); |
|
|
|
int left = (b.x - b.w / 2.)*im.w; |
|
int right = (b.x + b.w / 2.)*im.w; |
|
int top = (b.y - b.h / 2.)*im.h; |
|
int bot = (b.y + b.h / 2.)*im.h; |
|
|
|
if (left < 0) left = 0; |
|
if (right > im.w - 1) right = im.w - 1; |
|
if (top < 0) top = 0; |
|
if (bot > im.h - 1) bot = im.h - 1; |
|
|
|
//int b_x_center = (left + right) / 2; |
|
//int b_y_center = (top + bot) / 2; |
|
//int b_width = right - left; |
|
//int b_height = bot - top; |
|
//sprintf(labelstr, "%d x %d - w: %d, h: %d", b_x_center, b_y_center, b_width, b_height); |
|
|
|
// you should create directory: result_img |
|
//static int copied_frame_id = -1; |
|
//static image copy_img; |
|
//if (copied_frame_id != frame_id) { |
|
// copied_frame_id = frame_id; |
|
// if (copy_img.data) free_image(copy_img); |
|
// copy_img = copy_image(im); |
|
//} |
|
//image cropped_im = crop_image(copy_img, left, top, right - left, bot - top); |
|
//static int img_id = 0; |
|
//img_id++; |
|
//char image_name[1024]; |
|
//int best_class_id = selected_detections[i].best_class; |
|
//sprintf(image_name, "result_img/img_%d_%d_%d_%s.jpg", frame_id, img_id, best_class_id, names[best_class_id]); |
|
//save_image(cropped_im, image_name); |
|
//free_image(cropped_im); |
|
|
|
if (im.c == 1) { |
|
draw_box_width_bw(im, left, top, right, bot, width, 0.8); // 1 channel Black-White |
|
} |
|
else { |
|
draw_box_width(im, left, top, right, bot, width, red, green, blue); // 3 channels RGB |
|
} |
|
if (alphabet) { |
|
char labelstr[4096] = { 0 }; |
|
strcat(labelstr, names[selected_detections[i].best_class]); |
|
int j; |
|
for (j = 0; j < classes; ++j) { |
|
if (selected_detections[i].det.prob[j] > thresh && j != selected_detections[i].best_class) { |
|
strcat(labelstr, ", "); |
|
strcat(labelstr, names[j]); |
|
} |
|
} |
|
image label = get_label_v3(alphabet, labelstr, (im.h*.03)); |
|
draw_label(im, top + width, left, label, rgb); |
|
free_image(label); |
|
} |
|
if (selected_detections[i].det.mask) { |
|
image mask = float_to_image(14, 14, 1, selected_detections[i].det.mask); |
|
image resized_mask = resize_image(mask, b.w*im.w, b.h*im.h); |
|
image tmask = threshold_image(resized_mask, .5); |
|
embed_image(tmask, im, left, top); |
|
free_image(mask); |
|
free_image(resized_mask); |
|
free_image(tmask); |
|
} |
|
} |
|
free(selected_detections); |
|
} |
|
|
|
void draw_detections(image im, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes) |
|
{ |
|
int i; |
|
|
|
for(i = 0; i < num; ++i){ |
|
int class_id = max_index(probs[i], classes); |
|
float prob = probs[i][class_id]; |
|
if(prob > thresh){ |
|
|
|
//// for comparison with OpenCV version of DNN Darknet Yolo v2 |
|
//printf("\n %f, %f, %f, %f, ", boxes[i].x, boxes[i].y, boxes[i].w, boxes[i].h); |
|
// int k; |
|
//for (k = 0; k < classes; ++k) { |
|
// printf("%f, ", probs[i][k]); |
|
//} |
|
//printf("\n"); |
|
|
|
int width = im.h * .012; |
|
|
|
if(0){ |
|
width = pow(prob, 1./2.)*10+1; |
|
alphabet = 0; |
|
} |
|
|
|
int offset = class_id*123457 % classes; |
|
float red = get_color(2,offset,classes); |
|
float green = get_color(1,offset,classes); |
|
float blue = get_color(0,offset,classes); |
|
float rgb[3]; |
|
|
|
//width = prob*20+2; |
|
|
|
rgb[0] = red; |
|
rgb[1] = green; |
|
rgb[2] = blue; |
|
box b = boxes[i]; |
|
|
|
int left = (b.x-b.w/2.)*im.w; |
|
int right = (b.x+b.w/2.)*im.w; |
|
int top = (b.y-b.h/2.)*im.h; |
|
int bot = (b.y+b.h/2.)*im.h; |
|
|
|
if(left < 0) left = 0; |
|
if(right > im.w-1) right = im.w-1; |
|
if(top < 0) top = 0; |
|
if(bot > im.h-1) bot = im.h-1; |
|
printf("%s: %.0f%%", names[class_id], prob * 100); |
|
|
|
//printf(" - id: %d, x_center: %d, y_center: %d, width: %d, height: %d", |
|
// class_id, (right + left) / 2, (bot - top) / 2, right - left, bot - top); |
|
|
|
printf("\n"); |
|
draw_box_width(im, left, top, right, bot, width, red, green, blue); |
|
if (alphabet) { |
|
image label = get_label(alphabet, names[class_id], (im.h*.03)/10); |
|
draw_label(im, top + width, left, label, rgb); |
|
} |
|
} |
|
} |
|
} |
|
|
|
#ifdef OPENCV |
|
|
|
void save_cv_png(IplImage *img, const char *name) |
|
{ |
|
IplImage* img_rgb = cvCreateImage(cvSize(img->width, img->height), 8, 3); |
|
cvCvtColor(img, img_rgb, CV_RGB2BGR); |
|
stbi_write_png(name, img_rgb->width, img_rgb->height, 3, (char *)img_rgb->imageData, 0); |
|
cvRelease(&img_rgb); |
|
} |
|
|
|
void save_cv_jpg(IplImage *img, const char *name) |
|
{ |
|
IplImage* img_rgb = cvCreateImage(cvSize(img->width, img->height), 8, 3); |
|
cvCvtColor(img, img_rgb, CV_RGB2BGR); |
|
stbi_write_jpg(name, img_rgb->width, img_rgb->height, 3, (char *)img_rgb->imageData, 80); |
|
cvRelease(&img_rgb); |
|
} |
|
|
|
void draw_detections_cv_v3(IplImage* show_img, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output) |
|
{ |
|
int i, j; |
|
if (!show_img) return; |
|
static int frame_id = 0; |
|
frame_id++; |
|
|
|
for (i = 0; i < num; ++i) { |
|
char labelstr[4096] = { 0 }; |
|
int class_id = -1; |
|
for (j = 0; j < classes; ++j) { |
|
int show = strncmp(names[j], "dont_show", 9); |
|
if (dets[i].prob[j] > thresh && show) { |
|
if (class_id < 0) { |
|
strcat(labelstr, names[j]); |
|
class_id = j; |
|
} |
|
else { |
|
strcat(labelstr, ", "); |
|
strcat(labelstr, names[j]); |
|
} |
|
printf("%s: %.0f%% ", names[j], dets[i].prob[j] * 100); |
|
} |
|
} |
|
if (class_id >= 0) { |
|
int width = show_img->height * .006; |
|
|
|
//if(0){ |
|
//width = pow(prob, 1./2.)*10+1; |
|
//alphabet = 0; |
|
//} |
|
|
|
//printf("%d %s: %.0f%%\n", i, names[class_id], prob*100); |
|
int offset = class_id * 123457 % classes; |
|
float red = get_color(2, offset, classes); |
|
float green = get_color(1, offset, classes); |
|
float blue = get_color(0, offset, classes); |
|
float rgb[3]; |
|
|
|
//width = prob*20+2; |
|
|
|
rgb[0] = red; |
|
rgb[1] = green; |
|
rgb[2] = blue; |
|
box b = dets[i].bbox; |
|
b.w = (b.w < 1) ? b.w : 1; |
|
b.h = (b.h < 1) ? b.h : 1; |
|
b.x = (b.x < 1) ? b.x : 1; |
|
b.y = (b.y < 1) ? b.y : 1; |
|
//printf("%f %f %f %f\n", b.x, b.y, b.w, b.h); |
|
|
|
int left = (b.x - b.w / 2.)*show_img->width; |
|
int right = (b.x + b.w / 2.)*show_img->width; |
|
int top = (b.y - b.h / 2.)*show_img->height; |
|
int bot = (b.y + b.h / 2.)*show_img->height; |
|
|
|
if (left < 0) left = 0; |
|
if (right > show_img->width - 1) right = show_img->width - 1; |
|
if (top < 0) top = 0; |
|
if (bot > show_img->height - 1) bot = show_img->height - 1; |
|
|
|
//int b_x_center = (left + right) / 2; |
|
//int b_y_center = (top + bot) / 2; |
|
//int b_width = right - left; |
|
//int b_height = bot - top; |
|
//sprintf(labelstr, "%d x %d - w: %d, h: %d", b_x_center, b_y_center, b_width, b_height); |
|
|
|
float const font_size = show_img->height / 1000.F; |
|
CvPoint pt1, pt2, pt_text, pt_text_bg1, pt_text_bg2; |
|
pt1.x = left; |
|
pt1.y = top; |
|
pt2.x = right; |
|
pt2.y = bot; |
|
pt_text.x = left; |
|
pt_text.y = top - 12; |
|
pt_text_bg1.x = left; |
|
pt_text_bg1.y = top - (10 + 25 * font_size); |
|
pt_text_bg2.x = right; |
|
pt_text_bg2.y = top; |
|
CvScalar color; |
|
color.val[0] = red * 256; |
|
color.val[1] = green * 256; |
|
color.val[2] = blue * 256; |
|
|
|
// you should create directory: result_img |
|
//static int copied_frame_id = -1; |
|
//static IplImage* copy_img = NULL; |
|
//if (copied_frame_id != frame_id) { |
|
// copied_frame_id = frame_id; |
|
// if(copy_img == NULL) copy_img = cvCreateImage(cvSize(show_img->width, show_img->height), show_img->depth, show_img->nChannels); |
|
// cvCopy(show_img, copy_img, 0); |
|
//} |
|
//static int img_id = 0; |
|
//img_id++; |
|
//char image_name[1024]; |
|
//sprintf(image_name, "result_img/img_%d_%d_%d_%s.jpg", frame_id, img_id, class_id, names[class_id]); |
|
//CvRect rect = cvRect(pt1.x, pt1.y, pt2.x - pt1.x, pt2.y - pt1.y); |
|
//cvSetImageROI(copy_img, rect); |
|
//cvSaveImage(image_name, copy_img, 0); |
|
//cvResetImageROI(copy_img); |
|
|
|
cvRectangle(show_img, pt1, pt2, color, width, 8, 0); |
|
if (ext_output) |
|
printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n", |
|
(float)left, (float)top, b.w*show_img->width, b.h*show_img->height); |
|
else |
|
printf("\n"); |
|
|
|
cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, width, 8, 0); |
|
cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, CV_FILLED, 8, 0); // filled |
|
CvScalar black_color; |
|
black_color.val[0] = 0; |
|
CvFont font; |
|
cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, font_size, font_size, 0, font_size * 3, 8); |
|
cvPutText(show_img, labelstr, pt_text, &font, black_color); |
|
} |
|
} |
|
if (ext_output) { |
|
fflush(stdout); |
|
} |
|
} |
|
|
|
void draw_detections_cv(IplImage* show_img, int num, float thresh, box *boxes, float **probs, char **names, image **alphabet, int classes) |
|
{ |
|
int i; |
|
|
|
for (i = 0; i < num; ++i) { |
|
int class_id = max_index(probs[i], classes); |
|
float prob = probs[i][class_id]; |
|
if (prob > thresh) { |
|
|
|
int width = show_img->height * .012; |
|
|
|
if (0) { |
|
width = pow(prob, 1. / 2.) * 10 + 1; |
|
alphabet = 0; |
|
} |
|
|
|
printf("%s: %.0f%%\n", names[class_id], prob * 100); |
|
int offset = class_id * 123457 % classes; |
|
float red = get_color(2, offset, classes); |
|
float green = get_color(1, offset, classes); |
|
float blue = get_color(0, offset, classes); |
|
float rgb[3]; |
|
|
|
//width = prob*20+2; |
|
|
|
rgb[0] = red; |
|
rgb[1] = green; |
|
rgb[2] = blue; |
|
box b = boxes[i]; |
|
|
|
int left = (b.x - b.w / 2.)*show_img->width; |
|
int right = (b.x + b.w / 2.)*show_img->width; |
|
int top = (b.y - b.h / 2.)*show_img->height; |
|
int bot = (b.y + b.h / 2.)*show_img->height; |
|
|
|
if (left < 0) left = 0; |
|
if (right > show_img->width - 1) right = show_img->width - 1; |
|
if (top < 0) top = 0; |
|
if (bot > show_img->height - 1) bot = show_img->height - 1; |
|
|
|
float const font_size = show_img->height / 1000.F; |
|
CvPoint pt1, pt2, pt_text, pt_text_bg1, pt_text_bg2; |
|
pt1.x = left; |
|
pt1.y = top; |
|
pt2.x = right; |
|
pt2.y = bot; |
|
pt_text.x = left; |
|
pt_text.y = top - 12; |
|
pt_text_bg1.x = left; |
|
pt_text_bg1.y = top - (10+25*font_size); |
|
pt_text_bg2.x = right; |
|
pt_text_bg2.y = top; |
|
CvScalar color; |
|
color.val[0] = red * 256; |
|
color.val[1] = green * 256; |
|
color.val[2] = blue * 256; |
|
|
|
cvRectangle(show_img, pt1, pt2, color, width, 8, 0); |
|
//printf("left=%d, right=%d, top=%d, bottom=%d, obj_id=%d, obj=%s \n", left, right, top, bot, class_id, names[class_id]); |
|
cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, width, 8, 0); |
|
cvRectangle(show_img, pt_text_bg1, pt_text_bg2, color, CV_FILLED, 8, 0); // filled |
|
CvScalar black_color; |
|
black_color.val[0] = 0; |
|
CvFont font; |
|
cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX, font_size, font_size, 0, font_size * 3, 8); |
|
cvPutText(show_img, names[class_id], pt_text, &font, black_color); |
|
} |
|
} |
|
} |
|
|
|
IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size, int dont_show) |
|
{ |
|
int img_offset = 50; |
|
int draw_size = img_size - img_offset; |
|
IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3); |
|
cvSet(img, CV_RGB(255, 255, 255), 0); |
|
CvPoint pt1, pt2, pt_text; |
|
CvFont font; |
|
cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX_SMALL, 0.7, 0.7, 0, 1, CV_AA); |
|
char char_buff[100]; |
|
int i; |
|
// vertical lines |
|
pt1.x = img_offset; pt2.x = img_size, pt_text.x = 10; |
|
for (i = 1; i <= number_of_lines; ++i) { |
|
pt1.y = pt2.y = (float)i * draw_size / number_of_lines; |
|
cvLine(img, pt1, pt2, CV_RGB(224, 224, 224), 1, 8, 0); |
|
if (i % 10 == 0) { |
|
sprintf(char_buff, "%2.1f", max_img_loss*(number_of_lines - i) / number_of_lines); |
|
pt_text.y = pt1.y + 5; |
|
cvPutText(img, char_buff, pt_text, &font, CV_RGB(0, 0, 0)); |
|
cvLine(img, pt1, pt2, CV_RGB(128, 128, 128), 1, 8, 0); |
|
} |
|
} |
|
// horizontal lines |
|
pt1.y = draw_size; pt2.y = 0, pt_text.y = draw_size + 15; |
|
for (i = 0; i <= number_of_lines; ++i) { |
|
pt1.x = pt2.x = img_offset + (float)i * draw_size / number_of_lines; |
|
cvLine(img, pt1, pt2, CV_RGB(224, 224, 224), 1, 8, 0); |
|
if (i % 10 == 0) { |
|
sprintf(char_buff, "%d", max_batches * i / number_of_lines); |
|
pt_text.x = pt1.x - 20; |
|
cvPutText(img, char_buff, pt_text, &font, CV_RGB(0, 0, 0)); |
|
cvLine(img, pt1, pt2, CV_RGB(128, 128, 128), 1, 8, 0); |
|
} |
|
} |
|
|
|
cvPutText(img, "Loss", cvPoint(0, 35), &font, CV_RGB(0, 0, 255)); |
|
cvPutText(img, "Iteration number", cvPoint(draw_size / 2, img_size - 10), &font, CV_RGB(0, 0, 0)); |
|
char max_batches_buff[100]; |
|
sprintf(max_batches_buff, "in cfg max_batches=%d", max_batches); |
|
cvPutText(img, max_batches_buff, cvPoint(draw_size - 195, img_size - 10), &font, CV_RGB(0, 0, 0)); |
|
cvPutText(img, "Press 's' to save: chart.png", cvPoint(5, img_size - 10), &font, CV_RGB(0, 0, 0)); |
|
if (!dont_show) { |
|
printf(" If error occurs - run training with flag: -dont_show \n"); |
|
cvNamedWindow("average loss", CV_WINDOW_NORMAL); |
|
cvMoveWindow("average loss", 0, 0); |
|
cvResizeWindow("average loss", img_size, img_size); |
|
cvShowImage("average loss", img); |
|
cvWaitKey(20); |
|
} |
|
return img; |
|
} |
|
|
|
void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches, |
|
float precision, int draw_precision, int dont_show, int mjpeg_port) |
|
{ |
|
int img_offset = 50; |
|
int draw_size = img_size - img_offset; |
|
CvFont font; |
|
cvInitFont(&font, CV_FONT_HERSHEY_COMPLEX_SMALL, 0.7, 0.7, 0, 1, CV_AA); |
|
char char_buff[100]; |
|
CvPoint pt1, pt2; |
|
pt1.x = img_offset + draw_size * (float)current_batch / max_batches; |
|
pt1.y = draw_size * (1 - avg_loss / max_img_loss); |
|
if (pt1.y < 0) pt1.y = 1; |
|
cvCircle(img, pt1, 1, CV_RGB(0, 0, 255), CV_FILLED, 8, 0); |
|
|
|
// precision |
|
if (draw_precision) { |
|
static float old_precision = 0; |
|
static int iteration_old = 0; |
|
static int text_iteration_old = 0; |
|
if(iteration_old == 0) cvPutText(img, "mAP%", cvPoint(0, 12), &font, CV_RGB(255, 0, 0)); |
|
|
|
cvLine(img, |
|
cvPoint(img_offset + draw_size * (float)iteration_old / max_batches, draw_size * (1 - old_precision)), |
|
cvPoint(img_offset + draw_size * (float)current_batch / max_batches, draw_size * (1 - precision)), |
|
CV_RGB(255, 0, 0), 1, 8, 0); |
|
|
|
if (((int)(old_precision*10) != (int)(precision*10)) || (current_batch - text_iteration_old) >= max_batches/10) { |
|
text_iteration_old = current_batch; |
|
sprintf(char_buff, "%2.0f%% ", precision * 100); |
|
CvFont font3; |
|
cvInitFont(&font3, CV_FONT_HERSHEY_COMPLEX_SMALL, 0.7, 0.7, 0, 5, CV_AA); |
|
cvPutText(img, char_buff, cvPoint(pt1.x - 30, draw_size * (1 - precision) + 15), &font3, CV_RGB(255, 255, 255)); |
|
|
|
CvFont font2; |
|
cvInitFont(&font2, CV_FONT_HERSHEY_COMPLEX_SMALL, 0.7, 0.7, 0, 1, CV_AA); |
|
cvPutText(img, char_buff, cvPoint(pt1.x - 30, draw_size * (1 - precision) + 15), &font2, CV_RGB(200, 0, 0)); |
|
} |
|
old_precision = precision; |
|
iteration_old = current_batch; |
|
} |
|
|
|
sprintf(char_buff, "current avg loss = %2.4f iteration = %d", avg_loss, current_batch); |
|
pt1.x = 55, pt1.y = 10; |
|
pt2.x = pt1.x + 460, pt2.y = pt1.y + 20; |
|
cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), CV_FILLED, 8, 0); |
|
pt1.y += 15; |
|
cvPutText(img, char_buff, pt1, &font, CV_RGB(0, 0, 0)); |
|
|
|
int k = 0; |
|
if (!dont_show) { |
|
cvShowImage("average loss", img); |
|
k = cvWaitKey(20); |
|
} |
|
if (k == 's' || current_batch == (max_batches - 1) || current_batch % 100 == 0) { |
|
//cvSaveImage("chart.jpg", img, 0); |
|
save_cv_png(img, "chart.png"); |
|
cvPutText(img, "- Saved", cvPoint(250, img_size - 10), &font, CV_RGB(255, 0, 0)); |
|
} |
|
else |
|
cvPutText(img, "- Saved", cvPoint(250, img_size - 10), &font, CV_RGB(255, 255, 255)); |
|
|
|
if (mjpeg_port > 0) send_mjpeg(img, mjpeg_port, 2000, 80); |
|
} |
|
#endif // OPENCV |
|
|
|
void transpose_image(image im) |
|
{ |
|
assert(im.w == im.h); |
|
int n, m; |
|
int c; |
|
for(c = 0; c < im.c; ++c){ |
|
for(n = 0; n < im.w-1; ++n){ |
|
for(m = n + 1; m < im.w; ++m){ |
|
float swap = im.data[m + im.w*(n + im.h*c)]; |
|
im.data[m + im.w*(n + im.h*c)] = im.data[n + im.w*(m + im.h*c)]; |
|
im.data[n + im.w*(m + im.h*c)] = swap; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void rotate_image_cw(image im, int times) |
|
{ |
|
assert(im.w == im.h); |
|
times = (times + 400) % 4; |
|
int i, x, y, c; |
|
int n = im.w; |
|
for(i = 0; i < times; ++i){ |
|
for(c = 0; c < im.c; ++c){ |
|
for(x = 0; x < n/2; ++x){ |
|
for(y = 0; y < (n-1)/2 + 1; ++y){ |
|
float temp = im.data[y + im.w*(x + im.h*c)]; |
|
im.data[y + im.w*(x + im.h*c)] = im.data[n-1-x + im.w*(y + im.h*c)]; |
|
im.data[n-1-x + im.w*(y + im.h*c)] = im.data[n-1-y + im.w*(n-1-x + im.h*c)]; |
|
im.data[n-1-y + im.w*(n-1-x + im.h*c)] = im.data[x + im.w*(n-1-y + im.h*c)]; |
|
im.data[x + im.w*(n-1-y + im.h*c)] = temp; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void flip_image(image a) |
|
{ |
|
int i,j,k; |
|
for(k = 0; k < a.c; ++k){ |
|
for(i = 0; i < a.h; ++i){ |
|
for(j = 0; j < a.w/2; ++j){ |
|
int index = j + a.w*(i + a.h*(k)); |
|
int flip = (a.w - j - 1) + a.w*(i + a.h*(k)); |
|
float swap = a.data[flip]; |
|
a.data[flip] = a.data[index]; |
|
a.data[index] = swap; |
|
} |
|
} |
|
} |
|
} |
|
|
|
image image_distance(image a, image b) |
|
{ |
|
int i,j; |
|
image dist = make_image(a.w, a.h, 1); |
|
for(i = 0; i < a.c; ++i){ |
|
for(j = 0; j < a.h*a.w; ++j){ |
|
dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2); |
|
} |
|
} |
|
for(j = 0; j < a.h*a.w; ++j){ |
|
dist.data[j] = sqrt(dist.data[j]); |
|
} |
|
return dist; |
|
} |
|
|
|
void embed_image(image source, image dest, int dx, int dy) |
|
{ |
|
int x,y,k; |
|
for(k = 0; k < source.c; ++k){ |
|
for(y = 0; y < source.h; ++y){ |
|
for(x = 0; x < source.w; ++x){ |
|
float val = get_pixel(source, x,y,k); |
|
set_pixel(dest, dx+x, dy+y, k, val); |
|
} |
|
} |
|
} |
|
} |
|
|
|
image collapse_image_layers(image source, int border) |
|
{ |
|
int h = source.h; |
|
h = (h+border)*source.c - border; |
|
image dest = make_image(source.w, h, 1); |
|
int i; |
|
for(i = 0; i < source.c; ++i){ |
|
image layer = get_image_layer(source, i); |
|
int h_offset = i*(source.h+border); |
|
embed_image(layer, dest, 0, h_offset); |
|
free_image(layer); |
|
} |
|
return dest; |
|
} |
|
|
|
void constrain_image(image im) |
|
{ |
|
int i; |
|
for(i = 0; i < im.w*im.h*im.c; ++i){ |
|
if(im.data[i] < 0) im.data[i] = 0; |
|
if(im.data[i] > 1) im.data[i] = 1; |
|
} |
|
} |
|
|
|
void normalize_image(image p) |
|
{ |
|
int i; |
|
float min = 9999999; |
|
float max = -999999; |
|
|
|
for(i = 0; i < p.h*p.w*p.c; ++i){ |
|
float v = p.data[i]; |
|
if(v < min) min = v; |
|
if(v > max) max = v; |
|
} |
|
if(max - min < .000000001){ |
|
min = 0; |
|
max = 1; |
|
} |
|
for(i = 0; i < p.c*p.w*p.h; ++i){ |
|
p.data[i] = (p.data[i] - min)/(max-min); |
|
} |
|
} |
|
|
|
void normalize_image2(image p) |
|
{ |
|
float *min = calloc(p.c, sizeof(float)); |
|
float *max = calloc(p.c, sizeof(float)); |
|
int i,j; |
|
for(i = 0; i < p.c; ++i) min[i] = max[i] = p.data[i*p.h*p.w]; |
|
|
|
for(j = 0; j < p.c; ++j){ |
|
for(i = 0; i < p.h*p.w; ++i){ |
|
float v = p.data[i+j*p.h*p.w]; |
|
if(v < min[j]) min[j] = v; |
|
if(v > max[j]) max[j] = v; |
|
} |
|
} |
|
for(i = 0; i < p.c; ++i){ |
|
if(max[i] - min[i] < .000000001){ |
|
min[i] = 0; |
|
max[i] = 1; |
|
} |
|
} |
|
for(j = 0; j < p.c; ++j){ |
|
for(i = 0; i < p.w*p.h; ++i){ |
|
p.data[i+j*p.h*p.w] = (p.data[i+j*p.h*p.w] - min[j])/(max[j]-min[j]); |
|
} |
|
} |
|
free(min); |
|
free(max); |
|
} |
|
|
|
image copy_image(image p) |
|
{ |
|
image copy = p; |
|
copy.data = calloc(p.h*p.w*p.c, sizeof(float)); |
|
memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(float)); |
|
return copy; |
|
} |
|
|
|
void rgbgr_image(image im) |
|
{ |
|
int i; |
|
for(i = 0; i < im.w*im.h; ++i){ |
|
float swap = im.data[i]; |
|
im.data[i] = im.data[i+im.w*im.h*2]; |
|
im.data[i+im.w*im.h*2] = swap; |
|
} |
|
} |
|
|
|
#ifdef OPENCV |
|
void show_image_cv(image p, const char *name) |
|
{ |
|
int x,y,k; |
|
image copy = copy_image(p); |
|
constrain_image(copy); |
|
if(p.c == 3) rgbgr_image(copy); |
|
//normalize_image(copy); |
|
|
|
char buff[256]; |
|
//sprintf(buff, "%s (%d)", name, windows); |
|
sprintf(buff, "%s", name); |
|
|
|
IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); |
|
int step = disp->widthStep; |
|
cvNamedWindow(buff, CV_WINDOW_NORMAL); |
|
//cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); |
|
++windows; |
|
for(y = 0; y < p.h; ++y){ |
|
for(x = 0; x < p.w; ++x){ |
|
for(k= 0; k < p.c; ++k){ |
|
disp->imageData[y*step + x*p.c + k] = (unsigned char)(get_pixel(copy,x,y,k)*255); |
|
} |
|
} |
|
} |
|
free_image(copy); |
|
if(0){ |
|
int w = 448; |
|
int h = w*p.h/p.w; |
|
if(h > 1000){ |
|
h = 1000; |
|
w = h*p.w/p.h; |
|
} |
|
IplImage *buffer = disp; |
|
disp = cvCreateImage(cvSize(w, h), buffer->depth, buffer->nChannels); |
|
cvResize(buffer, disp, CV_INTER_LINEAR); |
|
cvReleaseImage(&buffer); |
|
} |
|
cvShowImage(buff, disp); |
|
|
|
cvReleaseImage(&disp); |
|
} |
|
|
|
|
|
void show_image_cv_ipl(IplImage *disp, const char *name) |
|
{ |
|
if (disp == NULL) return; |
|
char buff[256]; |
|
//sprintf(buff, "%s (%d)", name, windows); |
|
sprintf(buff, "%s", name); |
|
cvNamedWindow(buff, CV_WINDOW_NORMAL); |
|
//cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); |
|
++windows; |
|
cvShowImage(buff, disp); |
|
//cvReleaseImage(&disp); |
|
} |
|
#endif // OPENCV |
|
|
|
void show_image(image p, const char *name) |
|
{ |
|
#ifdef OPENCV |
|
show_image_cv(p, name); |
|
#else |
|
fprintf(stderr, "Not compiled with OpenCV, saving to %s.png instead\n", name); |
|
save_image(p, name); |
|
#endif |
|
} |
|
|
|
#ifdef OPENCV |
|
|
|
image ipl_to_image(IplImage* src) |
|
{ |
|
unsigned char *data = (unsigned char *)src->imageData; |
|
int h = src->height; |
|
int w = src->width; |
|
int c = src->nChannels; |
|
int step = src->widthStep; |
|
image out = make_image(w, h, c); |
|
int i, j, k, count=0;; |
|
|
|
for(k= 0; k < c; ++k){ |
|
for(i = 0; i < h; ++i){ |
|
for(j = 0; j < w; ++j){ |
|
out.data[count++] = data[i*step + j*c + k]/255.; |
|
} |
|
} |
|
} |
|
return out; |
|
} |
|
|
|
image load_image_cv(char *filename, int channels) |
|
{ |
|
IplImage* src = 0; |
|
int flag = -1; |
|
if (channels == 0) flag = 1; |
|
else if (channels == 1) flag = 0; |
|
else if (channels == 3) flag = 1; |
|
else { |
|
fprintf(stderr, "OpenCV can't force load with %d channels\n", channels); |
|
} |
|
|
|
if( (src = cvLoadImage(filename, flag)) == 0 ) |
|
{ |
|
char shrinked_filename[1024]; |
|
if (strlen(filename) >= 1024) sprintf(shrinked_filename, "name is too long"); |
|
else sprintf(shrinked_filename, "%s", filename); |
|
fprintf(stderr, "Cannot load image \"%s\"\n", shrinked_filename); |
|
FILE* fw = fopen("bad.list", "a"); |
|
fwrite(shrinked_filename, sizeof(char), strlen(shrinked_filename), fw); |
|
char *new_line = "\n"; |
|
fwrite(new_line, sizeof(char), strlen(new_line), fw); |
|
fclose(fw); |
|
if (check_mistakes) getchar(); |
|
return make_image(10,10,3); |
|
//exit(EXIT_FAILURE); |
|
} |
|
image out = ipl_to_image(src); |
|
cvReleaseImage(&src); |
|
if (out.c > 1) |
|
rgbgr_image(out); |
|
return out; |
|
} |
|
|
|
image get_image_from_stream(CvCapture *cap) |
|
{ |
|
IplImage* src = cvQueryFrame(cap); |
|
if (!src) return make_empty_image(0,0,0); |
|
image im = ipl_to_image(src); |
|
rgbgr_image(im); |
|
return im; |
|
} |
|
|
|
image get_image_from_stream_cpp(CvCapture *cap) |
|
{ |
|
//IplImage* src = cvQueryFrame(cap); |
|
IplImage* src; |
|
static int once = 1; |
|
if (once) { |
|
once = 0; |
|
do { |
|
src = get_webcam_frame(cap); |
|
if (!src) return make_empty_image(0, 0, 0); |
|
} while (src->width < 1 || src->height < 1 || src->nChannels < 1); |
|
printf("Video stream: %d x %d \n", src->width, src->height); |
|
} |
|
else |
|
src = get_webcam_frame(cap); |
|
|
|
if (!src) return make_empty_image(0, 0, 0); |
|
image im = ipl_to_image(src); |
|
rgbgr_image(im); |
|
return im; |
|
} |
|
|
|
int wait_for_stream(CvCapture *cap, IplImage* src, int dont_close) { |
|
if (!src) { |
|
if (dont_close) src = cvCreateImage(cvSize(416, 416), IPL_DEPTH_8U, 3); |
|
else return 0; |
|
} |
|
if (src->width < 1 || src->height < 1 || src->nChannels < 1) { |
|
if (dont_close) { |
|
cvReleaseImage(&src); |
|
int z = 0; |
|
for (z = 0; z < 20; ++z) { |
|
get_webcam_frame(cap); |
|
cvReleaseImage(&src); |
|
} |
|
src = cvCreateImage(cvSize(416, 416), IPL_DEPTH_8U, 3); |
|
} |
|
else return 0; |
|
} |
|
return 1; |
|
} |
|
|
|
image get_image_from_stream_resize(CvCapture *cap, int w, int h, int c, IplImage** in_img, int cpp_video_capture, int dont_close) |
|
{ |
|
c = c ? c : 3; |
|
IplImage* src; |
|
if (cpp_video_capture) { |
|
static int once = 1; |
|
if (once) { |
|
once = 0; |
|
do { |
|
src = get_webcam_frame(cap); |
|
if (!src) return make_empty_image(0, 0, 0); |
|
} while (src->width < 1 || src->height < 1 || src->nChannels < 1); |
|
printf("Video stream: %d x %d \n", src->width, src->height); |
|
} else |
|
src = get_webcam_frame(cap); |
|
} |
|
else src = cvQueryFrame(cap); |
|
|
|
if (cpp_video_capture) |
|
if(!wait_for_stream(cap, src, dont_close)) return make_empty_image(0, 0, 0); |
|
IplImage* new_img = cvCreateImage(cvSize(w, h), IPL_DEPTH_8U, c); |
|
*in_img = cvCreateImage(cvSize(src->width, src->height), IPL_DEPTH_8U, c); |
|
cvResize(src, *in_img, CV_INTER_LINEAR); |
|
cvResize(src, new_img, CV_INTER_LINEAR); |
|
image im = ipl_to_image(new_img); |
|
cvReleaseImage(&new_img); |
|
if (cpp_video_capture) cvReleaseImage(&src); |
|
if (c>1) |
|
rgbgr_image(im); |
|
return im; |
|
} |
|
|
|
image get_image_from_stream_letterbox(CvCapture *cap, int w, int h, int c, IplImage** in_img, int cpp_video_capture, int dont_close) |
|
{ |
|
c = c ? c : 3; |
|
IplImage* src; |
|
if (cpp_video_capture) { |
|
static int once = 1; |
|
if (once) { |
|
once = 0; |
|
do { |
|
src = get_webcam_frame(cap); |
|
if (!src) return make_empty_image(0, 0, 0); |
|
} while (src->width < 1 || src->height < 1 || src->nChannels < 1); |
|
printf("Video stream: %d x %d \n", src->width, src->height); |
|
} |
|
else |
|
src = get_webcam_frame(cap); |
|
} |
|
else src = cvQueryFrame(cap); |
|
|
|
if (cpp_video_capture) |
|
if (!wait_for_stream(cap, src, dont_close)) return make_empty_image(0, 0, 0); |
|
*in_img = cvCreateImage(cvSize(src->width, src->height), IPL_DEPTH_8U, c); |
|
cvResize(src, *in_img, CV_INTER_LINEAR); |
|
image tmp = ipl_to_image(src); |
|
image im = letterbox_image(tmp, w, h); |
|
free_image(tmp); |
|
if (cpp_video_capture) cvReleaseImage(&src); |
|
if (c>1) rgbgr_image(im); |
|
return im; |
|
} |
|
|
|
int get_stream_fps(CvCapture *cap, int cpp_video_capture) |
|
{ |
|
int fps = 25; |
|
if (cpp_video_capture) { |
|
fps = get_stream_fps_cpp(cap); |
|
} |
|
else { |
|
fps = cvGetCaptureProperty(cap, CV_CAP_PROP_FPS); |
|
} |
|
return fps; |
|
} |
|
#endif // OPENCV |
|
|
|
void save_image_png(image im, const char *name) |
|
{ |
|
char buff[256]; |
|
//sprintf(buff, "%s (%d)", name, windows); |
|
sprintf(buff, "%s.png", name); |
|
unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char)); |
|
int i,k; |
|
for(k = 0; k < im.c; ++k){ |
|
for(i = 0; i < im.w*im.h; ++i){ |
|
data[i*im.c+k] = (unsigned char) (255*im.data[i + k*im.w*im.h]); |
|
} |
|
} |
|
int success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c); |
|
free(data); |
|
if(!success) fprintf(stderr, "Failed to write image %s\n", buff); |
|
} |
|
|
|
void save_image_options(image im, const char *name, IMTYPE f, int quality) |
|
{ |
|
char buff[256]; |
|
//sprintf(buff, "%s (%d)", name, windows); |
|
if (f == PNG) sprintf(buff, "%s.png", name); |
|
else if (f == BMP) sprintf(buff, "%s.bmp", name); |
|
else if (f == TGA) sprintf(buff, "%s.tga", name); |
|
else if (f == JPG) sprintf(buff, "%s.jpg", name); |
|
else sprintf(buff, "%s.png", name); |
|
unsigned char *data = calloc(im.w*im.h*im.c, sizeof(char)); |
|
int i, k; |
|
for (k = 0; k < im.c; ++k) { |
|
for (i = 0; i < im.w*im.h; ++i) { |
|
data[i*im.c + k] = (unsigned char)(255 * im.data[i + k*im.w*im.h]); |
|
} |
|
} |
|
int success = 0; |
|
if (f == PNG) success = stbi_write_png(buff, im.w, im.h, im.c, data, im.w*im.c); |
|
else if (f == BMP) success = stbi_write_bmp(buff, im.w, im.h, im.c, data); |
|
else if (f == TGA) success = stbi_write_tga(buff, im.w, im.h, im.c, data); |
|
else if (f == JPG) success = stbi_write_jpg(buff, im.w, im.h, im.c, data, quality); |
|
free(data); |
|
if (!success) fprintf(stderr, "Failed to write image %s\n", buff); |
|
} |
|
|
|
void save_image(image im, const char *name) |
|
{ |
|
save_image_options(im, name, JPG, 80); |
|
} |
|
|
|
void save_image_jpg(image p, const char *name) |
|
{ |
|
save_image_options(p, name, JPG, 80); |
|
} |
|
|
|
void show_image_layers(image p, char *name) |
|
{ |
|
int i; |
|
char buff[256]; |
|
for(i = 0; i < p.c; ++i){ |
|
sprintf(buff, "%s - Layer %d", name, i); |
|
image layer = get_image_layer(p, i); |
|
show_image(layer, buff); |
|
free_image(layer); |
|
} |
|
} |
|
|
|
void show_image_collapsed(image p, char *name) |
|
{ |
|
image c = collapse_image_layers(p, 1); |
|
show_image(c, name); |
|
free_image(c); |
|
} |
|
|
|
image make_empty_image(int w, int h, int c) |
|
{ |
|
image out; |
|
out.data = 0; |
|
out.h = h; |
|
out.w = w; |
|
out.c = c; |
|
return out; |
|
} |
|
|
|
image make_image(int w, int h, int c) |
|
{ |
|
image out = make_empty_image(w,h,c); |
|
out.data = calloc(h*w*c, sizeof(float)); |
|
return out; |
|
} |
|
|
|
image make_random_image(int w, int h, int c) |
|
{ |
|
image out = make_empty_image(w,h,c); |
|
out.data = calloc(h*w*c, sizeof(float)); |
|
int i; |
|
for(i = 0; i < w*h*c; ++i){ |
|
out.data[i] = (rand_normal() * .25) + .5; |
|
} |
|
return out; |
|
} |
|
|
|
image float_to_image(int w, int h, int c, float *data) |
|
{ |
|
image out = make_empty_image(w,h,c); |
|
out.data = data; |
|
return out; |
|
} |
|
|
|
|
|
image rotate_crop_image(image im, float rad, float s, int w, int h, float dx, float dy, float aspect) |
|
{ |
|
int x, y, c; |
|
float cx = im.w/2.; |
|
float cy = im.h/2.; |
|
image rot = make_image(w, h, im.c); |
|
for(c = 0; c < im.c; ++c){ |
|
for(y = 0; y < h; ++y){ |
|
for(x = 0; x < w; ++x){ |
|
float rx = cos(rad)*((x - w/2.)/s*aspect + dx/s*aspect) - sin(rad)*((y - h/2.)/s + dy/s) + cx; |
|
float ry = sin(rad)*((x - w/2.)/s*aspect + dx/s*aspect) + cos(rad)*((y - h/2.)/s + dy/s) + cy; |
|
float val = bilinear_interpolate(im, rx, ry, c); |
|
set_pixel(rot, x, y, c, val); |
|
} |
|
} |
|
} |
|
return rot; |
|
} |
|
|
|
image rotate_image(image im, float rad) |
|
{ |
|
int x, y, c; |
|
float cx = im.w/2.; |
|
float cy = im.h/2.; |
|
image rot = make_image(im.w, im.h, im.c); |
|
for(c = 0; c < im.c; ++c){ |
|
for(y = 0; y < im.h; ++y){ |
|
for(x = 0; x < im.w; ++x){ |
|
float rx = cos(rad)*(x-cx) - sin(rad)*(y-cy) + cx; |
|
float ry = sin(rad)*(x-cx) + cos(rad)*(y-cy) + cy; |
|
float val = bilinear_interpolate(im, rx, ry, c); |
|
set_pixel(rot, x, y, c, val); |
|
} |
|
} |
|
} |
|
return rot; |
|
} |
|
|
|
void translate_image(image m, float s) |
|
{ |
|
int i; |
|
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s; |
|
} |
|
|
|
void scale_image(image m, float s) |
|
{ |
|
int i; |
|
for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s; |
|
} |
|
|
|
image crop_image(image im, int dx, int dy, int w, int h) |
|
{ |
|
image cropped = make_image(w, h, im.c); |
|
int i, j, k; |
|
for(k = 0; k < im.c; ++k){ |
|
for(j = 0; j < h; ++j){ |
|
for(i = 0; i < w; ++i){ |
|
int r = j + dy; |
|
int c = i + dx; |
|
float val = 0; |
|
r = constrain_int(r, 0, im.h-1); |
|
c = constrain_int(c, 0, im.w-1); |
|
if (r >= 0 && r < im.h && c >= 0 && c < im.w) { |
|
val = get_pixel(im, c, r, k); |
|
} |
|
set_pixel(cropped, i, j, k, val); |
|
} |
|
} |
|
} |
|
return cropped; |
|
} |
|
|
|
int best_3d_shift_r(image a, image b, int min, int max) |
|
{ |
|
if(min == max) return min; |
|
int mid = floor((min + max) / 2.); |
|
image c1 = crop_image(b, 0, mid, b.w, b.h); |
|
image c2 = crop_image(b, 0, mid+1, b.w, b.h); |
|
float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 10); |
|
float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 10); |
|
free_image(c1); |
|
free_image(c2); |
|
if(d1 < d2) return best_3d_shift_r(a, b, min, mid); |
|
else return best_3d_shift_r(a, b, mid+1, max); |
|
} |
|
|
|
int best_3d_shift(image a, image b, int min, int max) |
|
{ |
|
int i; |
|
int best = 0; |
|
float best_distance = FLT_MAX; |
|
for(i = min; i <= max; i += 2){ |
|
image c = crop_image(b, 0, i, b.w, b.h); |
|
float d = dist_array(c.data, a.data, a.w*a.h*a.c, 100); |
|
if(d < best_distance){ |
|
best_distance = d; |
|
best = i; |
|
} |
|
printf("%d %f\n", i, d); |
|
free_image(c); |
|
} |
|
return best; |
|
} |
|
|
|
void composite_3d(char *f1, char *f2, char *out, int delta) |
|
{ |
|
if(!out) out = "out"; |
|
image a = load_image(f1, 0,0,0); |
|
image b = load_image(f2, 0,0,0); |
|
int shift = best_3d_shift_r(a, b, -a.h/100, a.h/100); |
|
|
|
image c1 = crop_image(b, 10, shift, b.w, b.h); |
|
float d1 = dist_array(c1.data, a.data, a.w*a.h*a.c, 100); |
|
image c2 = crop_image(b, -10, shift, b.w, b.h); |
|
float d2 = dist_array(c2.data, a.data, a.w*a.h*a.c, 100); |
|
|
|
if(d2 < d1 && 0){ |
|
image swap = a; |
|
a = b; |
|
b = swap; |
|
shift = -shift; |
|
printf("swapped, %d\n", shift); |
|
} |
|
else{ |
|
printf("%d\n", shift); |
|
} |
|
|
|
image c = crop_image(b, delta, shift, a.w, a.h); |
|
int i; |
|
for(i = 0; i < c.w*c.h; ++i){ |
|
c.data[i] = a.data[i]; |
|
} |
|
#ifdef OPENCV |
|
save_image_jpg(c, out); |
|
#else |
|
save_image(c, out); |
|
#endif |
|
} |
|
|
|
void fill_image(image m, float s) |
|
{ |
|
int i; |
|
for (i = 0; i < m.h*m.w*m.c; ++i) m.data[i] = s; |
|
} |
|
|
|
void letterbox_image_into(image im, int w, int h, image boxed) |
|
{ |
|
int new_w = im.w; |
|
int new_h = im.h; |
|
if (((float)w / im.w) < ((float)h / im.h)) { |
|
new_w = w; |
|
new_h = (im.h * w) / im.w; |
|
} |
|
else { |
|
new_h = h; |
|
new_w = (im.w * h) / im.h; |
|
} |
|
image resized = resize_image(im, new_w, new_h); |
|
embed_image(resized, boxed, (w - new_w) / 2, (h - new_h) / 2); |
|
free_image(resized); |
|
} |
|
|
|
image letterbox_image(image im, int w, int h) |
|
{ |
|
int new_w = im.w; |
|
int new_h = im.h; |
|
if (((float)w / im.w) < ((float)h / im.h)) { |
|
new_w = w; |
|
new_h = (im.h * w) / im.w; |
|
} |
|
else { |
|
new_h = h; |
|
new_w = (im.w * h) / im.h; |
|
} |
|
image resized = resize_image(im, new_w, new_h); |
|
image boxed = make_image(w, h, im.c); |
|
fill_image(boxed, .5); |
|
//int i; |
|
//for(i = 0; i < boxed.w*boxed.h*boxed.c; ++i) boxed.data[i] = 0; |
|
embed_image(resized, boxed, (w - new_w) / 2, (h - new_h) / 2); |
|
free_image(resized); |
|
return boxed; |
|
} |
|
|
|
image resize_max(image im, int max) |
|
{ |
|
int w = im.w; |
|
int h = im.h; |
|
if(w > h){ |
|
h = (h * max) / w; |
|
w = max; |
|
} else { |
|
w = (w * max) / h; |
|
h = max; |
|
} |
|
if(w == im.w && h == im.h) return im; |
|
image resized = resize_image(im, w, h); |
|
return resized; |
|
} |
|
|
|
image resize_min(image im, int min) |
|
{ |
|
int w = im.w; |
|
int h = im.h; |
|
if(w < h){ |
|
h = (h * min) / w; |
|
w = min; |
|
} else { |
|
w = (w * min) / h; |
|
h = min; |
|
} |
|
if(w == im.w && h == im.h) return im; |
|
image resized = resize_image(im, w, h); |
|
return resized; |
|
} |
|
|
|
image random_crop_image(image im, int w, int h) |
|
{ |
|
int dx = rand_int(0, im.w - w); |
|
int dy = rand_int(0, im.h - h); |
|
image crop = crop_image(im, dx, dy, w, h); |
|
return crop; |
|
} |
|
|
|
image random_augment_image(image im, float angle, float aspect, int low, int high, int size) |
|
{ |
|
aspect = rand_scale(aspect); |
|
int r = rand_int(low, high); |
|
int min = (im.h < im.w*aspect) ? im.h : im.w*aspect; |
|
float scale = (float)r / min; |
|
|
|
float rad = rand_uniform(-angle, angle) * TWO_PI / 360.; |
|
|
|
float dx = (im.w*scale/aspect - size) / 2.; |
|
float dy = (im.h*scale - size) / 2.; |
|
if(dx < 0) dx = 0; |
|
if(dy < 0) dy = 0; |
|
dx = rand_uniform(-dx, dx); |
|
dy = rand_uniform(-dy, dy); |
|
|
|
image crop = rotate_crop_image(im, rad, scale, size, size, dx, dy, aspect); |
|
|
|
return crop; |
|
} |
|
|
|
float three_way_max(float a, float b, float c) |
|
{ |
|
return (a > b) ? ( (a > c) ? a : c) : ( (b > c) ? b : c) ; |
|
} |
|
|
|
float three_way_min(float a, float b, float c) |
|
{ |
|
return (a < b) ? ( (a < c) ? a : c) : ( (b < c) ? b : c) ; |
|
} |
|
|
|
// http://www.cs.rit.edu/~ncs/color/t_convert.html |
|
void rgb_to_hsv(image im) |
|
{ |
|
assert(im.c == 3); |
|
int i, j; |
|
float r, g, b; |
|
float h, s, v; |
|
for(j = 0; j < im.h; ++j){ |
|
for(i = 0; i < im.w; ++i){ |
|
r = get_pixel(im, i , j, 0); |
|
g = get_pixel(im, i , j, 1); |
|
b = get_pixel(im, i , j, 2); |
|
float max = three_way_max(r,g,b); |
|
float min = three_way_min(r,g,b); |
|
float delta = max - min; |
|
v = max; |
|
if(max == 0){ |
|
s = 0; |
|
h = 0; |
|
}else{ |
|
s = delta/max; |
|
if(r == max){ |
|
h = (g - b) / delta; |
|
} else if (g == max) { |
|
h = 2 + (b - r) / delta; |
|
} else { |
|
h = 4 + (r - g) / delta; |
|
} |
|
if (h < 0) h += 6; |
|
h = h/6.; |
|
} |
|
set_pixel(im, i, j, 0, h); |
|
set_pixel(im, i, j, 1, s); |
|
set_pixel(im, i, j, 2, v); |
|
} |
|
} |
|
} |
|
|
|
void hsv_to_rgb(image im) |
|
{ |
|
assert(im.c == 3); |
|
int i, j; |
|
float r, g, b; |
|
float h, s, v; |
|
float f, p, q, t; |
|
for(j = 0; j < im.h; ++j){ |
|
for(i = 0; i < im.w; ++i){ |
|
h = 6 * get_pixel(im, i , j, 0); |
|
s = get_pixel(im, i , j, 1); |
|
v = get_pixel(im, i , j, 2); |
|
if (s == 0) { |
|
r = g = b = v; |
|
} else { |
|
int index = floor(h); |
|
f = h - index; |
|
p = v*(1-s); |
|
q = v*(1-s*f); |
|
t = v*(1-s*(1-f)); |
|
if(index == 0){ |
|
r = v; g = t; b = p; |
|
} else if(index == 1){ |
|
r = q; g = v; b = p; |
|
} else if(index == 2){ |
|
r = p; g = v; b = t; |
|
} else if(index == 3){ |
|
r = p; g = q; b = v; |
|
} else if(index == 4){ |
|
r = t; g = p; b = v; |
|
} else { |
|
r = v; g = p; b = q; |
|
} |
|
} |
|
set_pixel(im, i, j, 0, r); |
|
set_pixel(im, i, j, 1, g); |
|
set_pixel(im, i, j, 2, b); |
|
} |
|
} |
|
} |
|
|
|
image grayscale_image(image im) |
|
{ |
|
assert(im.c == 3); |
|
int i, j, k; |
|
image gray = make_image(im.w, im.h, 1); |
|
float scale[] = {0.587, 0.299, 0.114}; |
|
for(k = 0; k < im.c; ++k){ |
|
for(j = 0; j < im.h; ++j){ |
|
for(i = 0; i < im.w; ++i){ |
|
gray.data[i+im.w*j] += scale[k]*get_pixel(im, i, j, k); |
|
} |
|
} |
|
} |
|
return gray; |
|
} |
|
|
|
image threshold_image(image im, float thresh) |
|
{ |
|
int i; |
|
image t = make_image(im.w, im.h, im.c); |
|
for(i = 0; i < im.w*im.h*im.c; ++i){ |
|
t.data[i] = im.data[i]>thresh ? 1 : 0; |
|
} |
|
return t; |
|
} |
|
|
|
image blend_image(image fore, image back, float alpha) |
|
{ |
|
assert(fore.w == back.w && fore.h == back.h && fore.c == back.c); |
|
image blend = make_image(fore.w, fore.h, fore.c); |
|
int i, j, k; |
|
for(k = 0; k < fore.c; ++k){ |
|
for(j = 0; j < fore.h; ++j){ |
|
for(i = 0; i < fore.w; ++i){ |
|
float val = alpha * get_pixel(fore, i, j, k) + |
|
(1 - alpha)* get_pixel(back, i, j, k); |
|
set_pixel(blend, i, j, k, val); |
|
} |
|
} |
|
} |
|
return blend; |
|
} |
|
|
|
void scale_image_channel(image im, int c, float v) |
|
{ |
|
int i, j; |
|
for(j = 0; j < im.h; ++j){ |
|
for(i = 0; i < im.w; ++i){ |
|
float pix = get_pixel(im, i, j, c); |
|
pix = pix*v; |
|
set_pixel(im, i, j, c, pix); |
|
} |
|
} |
|
} |
|
|
|
void translate_image_channel(image im, int c, float v) |
|
{ |
|
int i, j; |
|
for(j = 0; j < im.h; ++j){ |
|
for(i = 0; i < im.w; ++i){ |
|
float pix = get_pixel(im, i, j, c); |
|
pix = pix+v; |
|
set_pixel(im, i, j, c, pix); |
|
} |
|
} |
|
} |
|
|
|
image binarize_image(image im) |
|
{ |
|
image c = copy_image(im); |
|
int i; |
|
for(i = 0; i < im.w * im.h * im.c; ++i){ |
|
if(c.data[i] > .5) c.data[i] = 1; |
|
else c.data[i] = 0; |
|
} |
|
return c; |
|
} |
|
|
|
void saturate_image(image im, float sat) |
|
{ |
|
rgb_to_hsv(im); |
|
scale_image_channel(im, 1, sat); |
|
hsv_to_rgb(im); |
|
constrain_image(im); |
|
} |
|
|
|
void hue_image(image im, float hue) |
|
{ |
|
rgb_to_hsv(im); |
|
int i; |
|
for(i = 0; i < im.w*im.h; ++i){ |
|
im.data[i] = im.data[i] + hue; |
|
if (im.data[i] > 1) im.data[i] -= 1; |
|
if (im.data[i] < 0) im.data[i] += 1; |
|
} |
|
hsv_to_rgb(im); |
|
constrain_image(im); |
|
} |
|
|
|
void exposure_image(image im, float sat) |
|
{ |
|
rgb_to_hsv(im); |
|
scale_image_channel(im, 2, sat); |
|
hsv_to_rgb(im); |
|
constrain_image(im); |
|
} |
|
|
|
void distort_image(image im, float hue, float sat, float val) |
|
{ |
|
if (im.c >= 3) |
|
{ |
|
rgb_to_hsv(im); |
|
scale_image_channel(im, 1, sat); |
|
scale_image_channel(im, 2, val); |
|
int i; |
|
for(i = 0; i < im.w*im.h; ++i){ |
|
im.data[i] = im.data[i] + hue; |
|
if (im.data[i] > 1) im.data[i] -= 1; |
|
if (im.data[i] < 0) im.data[i] += 1; |
|
} |
|
hsv_to_rgb(im); |
|
} |
|
else |
|
{ |
|
scale_image_channel(im, 0, val); |
|
} |
|
constrain_image(im); |
|
} |
|
|
|
void random_distort_image(image im, float hue, float saturation, float exposure) |
|
{ |
|
float dhue = rand_uniform_strong(-hue, hue); |
|
float dsat = rand_scale(saturation); |
|
float dexp = rand_scale(exposure); |
|
distort_image(im, dhue, dsat, dexp); |
|
} |
|
|
|
void saturate_exposure_image(image im, float sat, float exposure) |
|
{ |
|
rgb_to_hsv(im); |
|
scale_image_channel(im, 1, sat); |
|
scale_image_channel(im, 2, exposure); |
|
hsv_to_rgb(im); |
|
constrain_image(im); |
|
} |
|
|
|
float bilinear_interpolate(image im, float x, float y, int c) |
|
{ |
|
int ix = (int) floorf(x); |
|
int iy = (int) floorf(y); |
|
|
|
float dx = x - ix; |
|
float dy = y - iy; |
|
|
|
float val = (1-dy) * (1-dx) * get_pixel_extend(im, ix, iy, c) + |
|
dy * (1-dx) * get_pixel_extend(im, ix, iy+1, c) + |
|
(1-dy) * dx * get_pixel_extend(im, ix+1, iy, c) + |
|
dy * dx * get_pixel_extend(im, ix+1, iy+1, c); |
|
return val; |
|
} |
|
|
|
image resize_image(image im, int w, int h) |
|
{ |
|
image resized = make_image(w, h, im.c); |
|
image part = make_image(w, im.h, im.c); |
|
int r, c, k; |
|
float w_scale = (float)(im.w - 1) / (w - 1); |
|
float h_scale = (float)(im.h - 1) / (h - 1); |
|
for(k = 0; k < im.c; ++k){ |
|
for(r = 0; r < im.h; ++r){ |
|
for(c = 0; c < w; ++c){ |
|
float val = 0; |
|
if(c == w-1 || im.w == 1){ |
|
val = get_pixel(im, im.w-1, r, k); |
|
} else { |
|
float sx = c*w_scale; |
|
int ix = (int) sx; |
|
float dx = sx - ix; |
|
val = (1 - dx) * get_pixel(im, ix, r, k) + dx * get_pixel(im, ix+1, r, k); |
|
} |
|
set_pixel(part, c, r, k, val); |
|
} |
|
} |
|
} |
|
for(k = 0; k < im.c; ++k){ |
|
for(r = 0; r < h; ++r){ |
|
float sy = r*h_scale; |
|
int iy = (int) sy; |
|
float dy = sy - iy; |
|
for(c = 0; c < w; ++c){ |
|
float val = (1-dy) * get_pixel(part, c, iy, k); |
|
set_pixel(resized, c, r, k, val); |
|
} |
|
if(r == h-1 || im.h == 1) continue; |
|
for(c = 0; c < w; ++c){ |
|
float val = dy * get_pixel(part, c, iy+1, k); |
|
add_pixel(resized, c, r, k, val); |
|
} |
|
} |
|
} |
|
|
|
free_image(part); |
|
return resized; |
|
} |
|
|
|
|
|
void test_resize(char *filename) |
|
{ |
|
image im = load_image(filename, 0,0, 3); |
|
float mag = mag_array(im.data, im.w*im.h*im.c); |
|
printf("L2 Norm: %f\n", mag); |
|
image gray = grayscale_image(im); |
|
|
|
image c1 = copy_image(im); |
|
image c2 = copy_image(im); |
|
image c3 = copy_image(im); |
|
image c4 = copy_image(im); |
|
distort_image(c1, .1, 1.5, 1.5); |
|
distort_image(c2, -.1, .66666, .66666); |
|
distort_image(c3, .1, 1.5, .66666); |
|
distort_image(c4, .1, .66666, 1.5); |
|
|
|
|
|
show_image(im, "Original"); |
|
show_image(gray, "Gray"); |
|
show_image(c1, "C1"); |
|
show_image(c2, "C2"); |
|
show_image(c3, "C3"); |
|
show_image(c4, "C4"); |
|
#ifdef OPENCV |
|
while(1){ |
|
image aug = random_augment_image(im, 0, .75, 320, 448, 320); |
|
show_image(aug, "aug"); |
|
free_image(aug); |
|
|
|
|
|
float exposure = 1.15; |
|
float saturation = 1.15; |
|
float hue = .05; |
|
|
|
image c = copy_image(im); |
|
|
|
float dexp = rand_scale(exposure); |
|
float dsat = rand_scale(saturation); |
|
float dhue = rand_uniform(-hue, hue); |
|
|
|
distort_image(c, dhue, dsat, dexp); |
|
show_image(c, "rand"); |
|
printf("%f %f %f\n", dhue, dsat, dexp); |
|
free_image(c); |
|
cvWaitKey(0); |
|
} |
|
#endif |
|
} |
|
|
|
|
|
image load_image_stb(char *filename, int channels) |
|
{ |
|
int w, h, c; |
|
unsigned char *data = stbi_load(filename, &w, &h, &c, channels); |
|
if (!data) { |
|
char shrinked_filename[1024]; |
|
if (strlen(filename) >= 1024) sprintf(shrinked_filename, "name is too long"); |
|
else sprintf(shrinked_filename, "%s", filename); |
|
fprintf(stderr, "Cannot load image \"%s\"\nSTB Reason: %s\n", shrinked_filename, stbi_failure_reason()); |
|
FILE* fw = fopen("bad.list", "a"); |
|
fwrite(shrinked_filename, sizeof(char), strlen(shrinked_filename), fw); |
|
char *new_line = "\n"; |
|
fwrite(new_line, sizeof(char), strlen(new_line), fw); |
|
fclose(fw); |
|
if (check_mistakes) getchar(); |
|
return make_image(10, 10, 3); |
|
//exit(EXIT_FAILURE); |
|
} |
|
if(channels) c = channels; |
|
int i,j,k; |
|
image im = make_image(w, h, c); |
|
for(k = 0; k < c; ++k){ |
|
for(j = 0; j < h; ++j){ |
|
for(i = 0; i < w; ++i){ |
|
int dst_index = i + w*j + w*h*k; |
|
int src_index = k + c*i + c*w*j; |
|
im.data[dst_index] = (float)data[src_index]/255.; |
|
} |
|
} |
|
} |
|
free(data); |
|
return im; |
|
} |
|
|
|
image load_image(char *filename, int w, int h, int c) |
|
{ |
|
#ifdef OPENCV |
|
|
|
#ifndef CV_VERSION_EPOCH |
|
//image out = load_image_stb(filename, c); // OpenCV 3.x |
|
image out = load_image_cv(filename, c); |
|
#else |
|
image out = load_image_cv(filename, c); // OpenCV 2.4.x |
|
#endif |
|
|
|
#else |
|
image out = load_image_stb(filename, c); // without OpenCV |
|
#endif |
|
|
|
if((h && w) && (h != out.h || w != out.w)){ |
|
image resized = resize_image(out, w, h); |
|
free_image(out); |
|
out = resized; |
|
} |
|
return out; |
|
} |
|
|
|
image load_image_color(char *filename, int w, int h) |
|
{ |
|
return load_image(filename, w, h, 3); |
|
} |
|
|
|
image get_image_layer(image m, int l) |
|
{ |
|
image out = make_image(m.w, m.h, 1); |
|
int i; |
|
for(i = 0; i < m.h*m.w; ++i){ |
|
out.data[i] = m.data[i+l*m.h*m.w]; |
|
} |
|
return out; |
|
} |
|
|
|
void print_image(image m) |
|
{ |
|
int i, j, k; |
|
for(i =0 ; i < m.c; ++i){ |
|
for(j =0 ; j < m.h; ++j){ |
|
for(k = 0; k < m.w; ++k){ |
|
printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]); |
|
if(k > 30) break; |
|
} |
|
printf("\n"); |
|
if(j > 30) break; |
|
} |
|
printf("\n"); |
|
} |
|
printf("\n"); |
|
} |
|
|
|
image collapse_images_vert(image *ims, int n) |
|
{ |
|
int color = 1; |
|
int border = 1; |
|
int h,w,c; |
|
w = ims[0].w; |
|
h = (ims[0].h + border) * n - border; |
|
c = ims[0].c; |
|
if(c != 3 || !color){ |
|
w = (w+border)*c - border; |
|
c = 1; |
|
} |
|
|
|
image filters = make_image(w, h, c); |
|
int i,j; |
|
for(i = 0; i < n; ++i){ |
|
int h_offset = i*(ims[0].h+border); |
|
image copy = copy_image(ims[i]); |
|
//normalize_image(copy); |
|
if(c == 3 && color){ |
|
embed_image(copy, filters, 0, h_offset); |
|
} |
|
else{ |
|
for(j = 0; j < copy.c; ++j){ |
|
int w_offset = j*(ims[0].w+border); |
|
image layer = get_image_layer(copy, j); |
|
embed_image(layer, filters, w_offset, h_offset); |
|
free_image(layer); |
|
} |
|
} |
|
free_image(copy); |
|
} |
|
return filters; |
|
} |
|
|
|
image collapse_images_horz(image *ims, int n) |
|
{ |
|
int color = 1; |
|
int border = 1; |
|
int h,w,c; |
|
int size = ims[0].h; |
|
h = size; |
|
w = (ims[0].w + border) * n - border; |
|
c = ims[0].c; |
|
if(c != 3 || !color){ |
|
h = (h+border)*c - border; |
|
c = 1; |
|
} |
|
|
|
image filters = make_image(w, h, c); |
|
int i,j; |
|
for(i = 0; i < n; ++i){ |
|
int w_offset = i*(size+border); |
|
image copy = copy_image(ims[i]); |
|
//normalize_image(copy); |
|
if(c == 3 && color){ |
|
embed_image(copy, filters, w_offset, 0); |
|
} |
|
else{ |
|
for(j = 0; j < copy.c; ++j){ |
|
int h_offset = j*(size+border); |
|
image layer = get_image_layer(copy, j); |
|
embed_image(layer, filters, w_offset, h_offset); |
|
free_image(layer); |
|
} |
|
} |
|
free_image(copy); |
|
} |
|
return filters; |
|
} |
|
|
|
void show_image_normalized(image im, const char *name) |
|
{ |
|
image c = copy_image(im); |
|
normalize_image(c); |
|
show_image(c, name); |
|
free_image(c); |
|
} |
|
|
|
void show_images(image *ims, int n, char *window) |
|
{ |
|
image m = collapse_images_vert(ims, n); |
|
/* |
|
int w = 448; |
|
int h = ((float)m.h/m.w) * 448; |
|
if(h > 896){ |
|
h = 896; |
|
w = ((float)m.w/m.h) * 896; |
|
} |
|
image sized = resize_image(m, w, h); |
|
*/ |
|
normalize_image(m); |
|
save_image(m, window); |
|
show_image(m, window); |
|
free_image(m); |
|
} |
|
|
|
void free_image(image m) |
|
{ |
|
if(m.data){ |
|
free(m.data); |
|
} |
|
} |
|
|
|
// Fast copy data from a contiguous byte array into the image. |
|
LIB_API void copy_image_from_bytes(image im, char *pdata) |
|
{ |
|
unsigned char *data = (unsigned char*)pdata; |
|
int i, k, j; |
|
int w = im.w; |
|
int h = im.h; |
|
int c = im.c; |
|
for (k = 0; k < c; ++k) { |
|
for (j = 0; j < h; ++j) { |
|
for (i = 0; i < w; ++i) { |
|
int dst_index = i + w * j + w * h*k; |
|
int src_index = k + c * i + c * w*j; |
|
im.data[dst_index] = (float)data[src_index] / 255.; |
|
} |
|
} |
|
} |
|
} |