mirror of https://github.com/AlexeyAB/darknet.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
53 lines
2.4 KiB
53 lines
2.4 KiB
#ifndef CONVOLUTIONAL_LAYER_H |
|
#define CONVOLUTIONAL_LAYER_H |
|
|
|
#include "cuda.h" |
|
#include "image.h" |
|
#include "activations.h" |
|
#include "layer.h" |
|
#include "network.h" |
|
|
|
typedef layer convolutional_layer; |
|
|
|
#ifdef GPU |
|
void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state); |
|
void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state); |
|
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay); |
|
|
|
void push_convolutional_layer(convolutional_layer layer); |
|
void pull_convolutional_layer(convolutional_layer layer); |
|
|
|
void add_bias_gpu(float *output, float *biases, int batch, int n, int size); |
|
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size); |
|
#ifdef CUDNN |
|
void cudnn_convolutional_setup(layer *l, int cudnn_preference); |
|
void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16); |
|
#endif |
|
#endif |
|
|
|
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam); |
|
void denormalize_convolutional_layer(convolutional_layer l); |
|
void resize_convolutional_layer(convolutional_layer *layer, int w, int h); |
|
void forward_convolutional_layer(const convolutional_layer layer, network_state state); |
|
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay); |
|
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_weights); |
|
void binarize_weights(float *weights, int n, int size, float *binary); |
|
void swap_binary(convolutional_layer *l); |
|
void binarize_weights2(float *weights, int n, int size, char *binary, float *scales); |
|
|
|
void backward_convolutional_layer(convolutional_layer layer, network_state state); |
|
|
|
void add_bias(float *output, float *biases, int batch, int n, int size); |
|
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size); |
|
|
|
image get_convolutional_image(convolutional_layer layer); |
|
image get_convolutional_delta(convolutional_layer layer); |
|
image get_convolutional_weight(convolutional_layer layer, int i); |
|
|
|
int convolutional_out_height(convolutional_layer layer); |
|
int convolutional_out_width(convolutional_layer layer); |
|
void rescale_weights(convolutional_layer l, float scale, float trans); |
|
void rgbgr_weights(convolutional_layer l); |
|
|
|
#endif |
|
|
|
|